Preparation of Pressure-Resistant and Mechanically Durable Superhydrophobic Coatings via Non-Solvent Induced Phase Separation for Anti-Icing.

Small

Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 18 Tianshui Middle Road, Chengguan District, Lanzhou, Gansu, 730000, China.

Published: December 2024

AI Article Synopsis

  • Inspired by the lotus leaf effect, a new method for creating superhydrophobic coatings using spray-coating of a phase separation suspension has been developed to enhance pressure resistance and mechanical durability.
  • The coatings are made with fluorinated silica nanoparticles and polyolefin adhesive, resulting in a unique micro-/nanostructure that retains a superhydrophobic state even after prolonged exposure to water and various stress tests.
  • They also demonstrate excellent chemical stability and anti-icing properties, making them suitable for diverse applications and overcoming the limitations of traditional coatings.

Article Abstract

Inspired by the lotus leaf effect, superhydrophobic coatings have significant potential in various fields, However, their poor pressure resistance, weak mechanical durability, and complex preparation processes severely limit practical applications. Here, a method for preparing pressure-resistant and durable superhydrophobic coatings by simply spray-coating a phase separation suspension containing fluorinated silica nanoparticles and polyolefin adhesive onto substrates is introduced, which forms superhydrophobic coatings with a porous and hierarchical micro-/nanostructure. The resulting superhydrophobic coatings exhibit outstanding pressure resistance, maintaining a Cassie-Baxte state after 18 days of submersion in 1 m of water. Furthermore, the coatings demonstrate remarkable mechanical durability, withstanding 200 cycles of Taber abrasion, 100 cycles of tape-peeling, and 750 g of sand abrasion. The coatings also show excellent chemical stability, enduring long-term immersion in corrosive liquids and 120 d of outdoor exposure. Additionally, the coatings display excellent anti-icing properties and can be applied to various substrate surfaces. This approach improves on the limitations of conventional superhydrophobic coatings and accelerates the application of superhydrophobic coatings in real-world environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202406490DOI Listing

Publication Analysis

Top Keywords

superhydrophobic coatings
28
coatings
10
durable superhydrophobic
8
phase separation
8
pressure resistance
8
mechanical durability
8
superhydrophobic
7
preparation pressure-resistant
4
pressure-resistant mechanically
4
mechanically durable
4

Similar Publications

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

The purpose of this research is to investigate the potential of chemical modification to improve the hydrophobic properties and thermal stability of bamboo fibers and to evaluate the sound absorption performance of raw and modified fibers. To achieve this goal, bamboo fibers were modified using stearic acid coatings and aluminum hydroxide nanoparticles. The results showed that the modification of fibers with stearic acid (STA) can improve the contact angle and hydrophobicity of bamboo fibers, so that for modified fibers with a concentration of 0.

View Article and Find Full Text PDF

Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.

Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.

View Article and Find Full Text PDF

Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that maintain a high contact angle. This review provides an in-depth analysis of recent advancements in the development of superhydrophobic paper-based materials, focusing on methodologies for modification, underlying mechanisms, and performance in various applications.

View Article and Find Full Text PDF

This research centers around cast steel 20Mn, which is the material utilized for the ear-picking roller of a corn harvester. The study delves into methods of enhancing its hydrophobicity and wear resistance. Fiber laser-processing technology was employed to fabricate pangolin bionic micro-textures on the material surface, and PVD technology was utilized to deposit a TiN coating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!