A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electromyographically controlled prosthetic wrist improves dexterity and reduces compensatory movements without added cognitive load. | LitMetric

AI Article Synopsis

  • - The study evaluates the effectiveness of two myoelectric prosthetic wrists (a commercial one and a new affordable "Utah wrist") in improving task performance for transradial amputees during a specific task.
  • - Results showed a significant reduction in task failure rates and compensatory movements when participants used the prosthetic wrists compared to when they did not use them.
  • - Importantly, using the prosthetic wrists did not increase cognitive load for users, suggesting they enhance dexterity without making the task mentally more challenging.

Article Abstract

Wrist function is a top priority for transradial amputees. However, the combined functional, biomechanical, and cognitive impact of using a powered prosthetic wrist is unclear. Here, we quantify task performance, compensatory movements, and cognitive load while three transradial amputees performed a modified Clothespin Relocation Task using two myoelectric prostheses with and without the wrists. The two myoelectric prostheses include a commercial prosthesis with a built-in powered wrist, and a newly developed inexpensive prosthetic wrist for research purposes, called the "Utah wrist", that can be adapted to work with various sockets and prostheses. For these three participants, task failure rate decreased significantly from 66% ± 12% without the wrist to 39% ± 9% with the Utah wrist. Compensatory forward leaning movements also decreased significantly, from 24.2° ± 2.5 without the wrist to 12.6° ± 1.0 with the Utah wrist, and from 23.6° ± 7.6 to 15.3° ± 7.2 with the commercial prosthesis with an integrated wrist. Compensatory leftward bending movements also significantly decreased, from 20.8° ± 8.6 to 12.3° ± 5.3, for the commercial with an integrated wrist. Importantly, simultaneous myoelectric control of either prosthetic wrist had no significant impact on cognitive load, as assessed by the NASA Task Load Index survey and a secondary detection response task. This work suggests that functional prosthetic wrists can improve dexterity and reduce compensation without significantly increasing cognitive effort. These results, and the introduction of a new inexpensive prosthetic wrist for research purposes, can aid future research and development and guide the prescription of upper-limb prostheses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456584PMC
http://dx.doi.org/10.1038/s41598-024-73855-1DOI Listing

Publication Analysis

Top Keywords

prosthetic wrist
20
wrist
13
cognitive load
12
compensatory movements
8
movements cognitive
8
transradial amputees
8
myoelectric prostheses
8
commercial prosthesis
8
inexpensive prosthetic
8
wrist purposes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!