Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Melanoma-associated antigen A6 (MAGEA6) is well known to have oncogenic activity, but the underlying mechanisms by which it regulates tumor progression and chemo-resistance, especially in triple-negative breast cancer (TNBC), have been unknown. In the study, the differential expression genes (DEGs) in TNBC tumor tissues and TNBC-resistant tumor tissues were analyzed based on TCGA and GEO datasets. MAGEA6, as the most significantly expressed gene, was analyzed by RT-qPCR, western blotting and immunohistochemistry assay in TNBC cell lines and tumor tissues. The potential mechanisms that influence chemo-resistance were also evaluated. Results displayed that MAGEA6 was highly expressed in TNBC and involved in drug resistance. MAGEA6 silencing enhanced the chemo-sensitivity of TNBC to doxorubicin (DOX) in vitro and in vivo, as determined by decreasing IC value, proliferation and invasion capacity, and triggering apoptosis. Mechanistically, it was shown that MAGEA6 depletion sensitized TNBC to DOX via regulating autophagy. Ubiquitination assay displayed that knockdown of MAGEA6 decreased the AMPKα1 ubiquitination, thereby elevating the levels of AMPKα1 and p-AMPKα in TNBC cells. Importantly, AMPK inhibitor (Compound C) can reduce the LC3II/I level induced by sh-MAGEA6, indicating that sh-MAGEA6 activated AMPK signaling through suppressing AMPKα1 ubiquitination and then facilitated autophagy in TNBC. Furthermore, we also observed that AMPK is required for SLC7A11 to regulate ferroptosis, and supported the crux roles of MAGEA6/AMPK/SLC7A11-mediated ferroptosis on modulating DOX sensitivity in TNBC cells. These findings indicated that targeting MAGEA6 can enhance the chemo-sensitivity in TNBC via activation of autophagy and ferroptosis; its mechanism involves AMPKα1-dependent autophagy and AMPKα1/SLC7A11-induced ferroptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456603 | PMC |
http://dx.doi.org/10.1038/s41420-024-02196-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!