Exploring bacterial extracellular vesicles: Focus on WHO critical priority pathogens.

Curr Top Membr

Laboratório Multidisciplinar em Saúde e Meio Ambiente, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, SP, Brazil. Electronic address:

Published: October 2024

AI Article Synopsis

  • Bacterial extracellular vesicles (EVs) are tiny particles released by bacteria, helping them communicate and affecting how they and their hosts function.
  • These EVs contain important stuff like proteins, DNA, and RNA, making them useful for medicine, especially in delivering drugs and creating vaccines.
  • The review looks closely at two harmful bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, highlighting how their outer membrane vesicles (OMVs) contribute to diseases and discussing vaccine strategies to fight them.

Article Abstract

Bacterial extracellular vesicles (EVs) are cell-derived particles with a phospholipidic bilayer structure and diameter ranging from 20 to 250 nm, comprising a varied of components, including bioactive proteins, lipids, DNA, RNA, and other metabolites. These EVs play an essential role in bacterial and host function and are recognized as essential keys in cell-to-cell communication and pathogenesis. Due to these characteristics and functions, EVs exhibit great potential for biomedical applications and are promising tools for the development of drug delivery systems and vaccines, as well as for use in disease diagnostics. An interesting focus of this review is on the clinical relevance of EVs, with a particular emphasis on two critical pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Insights into the outer membrane vesicles (OMVs) derived from these bacteria underscore their roles in antimicrobial resistance and pathogenicity. Additionally, the review explores OMV-based vaccine strategies as a promising means to mitigating these pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.ctm.2024.06.009DOI Listing

Publication Analysis

Top Keywords

bacterial extracellular
8
extracellular vesicles
8
exploring bacterial
4
vesicles focus
4
focus critical
4
critical priority
4
priority pathogens
4
pathogens bacterial
4
evs
4
vesicles evs
4

Similar Publications

This study hypothesizes that eugenol, due to its structural properties, can inhibit glucosyltransferase activity, thereby reducing polysaccharide synthesis in Typhimurium biofilms. It was found that eugenol exhibited minimum inhibitory and bactericidal concentrations of 0.6 mg mL and 0.

View Article and Find Full Text PDF

Dogs are increasingly recognized as valuable large animal models for understanding human intestinal diseases, as they naturally develop conditions similar to those in humans, such as Enterohemorrhagic , , inflammatory bowel disease, and ulcerative colitis. Given the similarity in gut flora between dogs and humans, canine intestinal models are ideal for translational research. However, conventional extracellular matrix-embedded organoids present challenges in accessing the lumen, which is critical for gut function.

View Article and Find Full Text PDF

A surface protein identified from Streptococcus suis serotype 2 exhibits neutrophil-resistant ability via its polysaccharide capsule.

Microb Pathog

December 2024

MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, PR China. Electronic address:

Article Synopsis
  • Streptococcus suis serotype 2 (SS2) is a zoonotic bacteria that can cause serious diseases, but how it avoids the body's immune system is not well understood.
  • A study identified a specific protein mutation in SS2 that leads to increased neutrophil responses, yet the mutated bacteria survive poorly in the bloodstream compared to the original strain.
  • The deletion of this protein results in a weaker protective capsule and boosts the bacteria's ability to form biofilms; however, it also decreases the bacteria's survival within immune cells, highlighting potential targets for preventing infections.
View Article and Find Full Text PDF

How biofilm and granular sludge cope with dissolved oxygen exposure in anammox process: Performance, bioaccumulation characteristics and bacterial evolution.

J Environ Manage

December 2024

Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China. Electronic address:

In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L hardly affected the total nitrogen removal efficiency (TNRE).

View Article and Find Full Text PDF

In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!