Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deep eutectic solvents (DESs) are renowned in chemical and food industries for their eco-friendly extraction efficacy. Silver carp swim bladders, a collagen-rich byproduct of surimi production, are underutilized, resulting in considerable protein waste. Traditionally, collagen extraction has relied on harsh acids, contributing to environmental pollution and producing collagens with limited solubility, thus constraining their applications. This study evaluated DESs compared to conventional acids in extracting collagen, focusing on structural and solubility variations. Notably, urea-based DESs (urea-lactic acid: U-LA, 1:10, w/v) achieved the highest hydroxyproline recovery rates (∼ 94 %), comparable to acetic acid (AA, 1:20, w/v), but with half the solid-liquid ratio. Unlike acid-extracted collagen, which preserved the triple-helical structure, urea-based DESs partially disrupted this configuration by reducing intramolecular hydrogen bonding within collagen. However, these solvents simultaneously increased intermolecular hydrogen bonding. This alteration significantly enhanced collagen's solubility, maintaining over 60 % across a broad pH range (1-10) and various NaCl concentrations (0-6 %, w/v). Furthermore, urea-acetic acid (U-AA) extracted collagen exhibited the highest maximum transition temperature (solid state, T = 101.94 °C) and gel strength (165 g). The findings suggest that urea-based DESs not only enhance collagen recovery rates but also its solubility and gelation properties, broadening its potential applications in cosmetics, food products, and biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136315 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!