Mixture Assessment Factors (MAFs) have been proposed in the European Union (EU) as a rapid and simple way of protecting aquatic organisms from the combined effects of unintentional chemical mixtures when regulating industrial chemicals under the REACH (EU Regulation on the registration, evaluation, authorisation, and restriction of chemicals) program. A wide range of values has been suggested for the MAF including values of 20 or larger. In this paper we performed a series of case studies using composition data from 46,546 mixtures reported in three surveys of chemicals in EU surface waters. We determine that much of the evidence indicating a need for MAF values of five or greater is the result of assumptions on the impacts of future mitigations and screening assumptions used when determining combined risk. In this paper we present estimates of the MAF values that are based on more realistic assumptions for the impacts of future mitigation and mixture risk assessments that use data on the specific endpoints caused by chemicals and the modes-of-action (MoAs) by which the endpoints occur. We show that smaller MAFs may be sufficient to protect ecological receptors in >95 % of the mixtures reported in each of the three surveys. We also show that generic MAFs could be tailored to individual chemicals based on the chemicals endpoints and MoAs. Finally, we demonstrate that the use of a large MAF could result in unnecessary concerns for chemical mixtures in many surface waters. These findings suggest that caution should be taken in the use of large MAFs in regulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176703DOI Listing

Publication Analysis

Top Keywords

chemical mixtures
12
surface waters
12
mixture assessment
8
mixtures surface
8
mixtures reported
8
reported three
8
three surveys
8
maf values
8
assumptions impacts
8
impacts future
8

Similar Publications

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Enhanced Discriminability of Viral Vectors in Viscous Nanopores.

Small Methods

January 2025

Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.

Achieving safe and efficient gene therapy hinges upon the inspection of genomes enclosed within individual nano-carriers to mitigate potential health risks associated with empty or fragment-filled vectors. Here solid-state nanopore sensing is reported for identifications of intermediate adeno-associated virus (AAV) vectors in liquid. The method exploits the phenomenon of translocation slowdown induced by the viscosity of salt water-organic mixtures.

View Article and Find Full Text PDF

Precise prediction of adsorption in a multicomponent system is vital for successful design of dye-contaminated industrial wastewater treatment processes. The present work looks for the reason behind the failure of the competitive Langmuir model (CLM) to describe adsorption in such systems, while the Langmuir model (LM) successfully describes the process for a single dye solution. With that end, derivations of LM and CLM have been revisited, and a criterion for the universality of active sites has been defined.

View Article and Find Full Text PDF

Polymers are promising as stabilizers for developing eco-friendly foam extinguishing agents to solve the imminent pollution problem of fluorinated ones. Present work aims to elucidate the mechanisms by which polymers influence the performance of non-fluorinated foams. Specifically, it investigates the effects of three polymers-xanthan gum (XG), sodium carboxymethyl cellulose (CMCNa), and gelatin (GEL) on surface tension, conductivity, viscosity, foamability, foam stability, and rheology of the siloxane-based Gemini/sodium alpha-alkenyl sulfonate mixture.

View Article and Find Full Text PDF

Current manual multi-methods for analysis of pesticides are limited due to their complexity and scope of pesticides, high demand for time and solvent or unsuitability for broad types of food of animal origin. The following research presents a novel automated sample preparation and purification method for various food matrices of animal origin, including milk, raw milk, dairy products, cheese, eggs, fish, fish products, and offal. The Ultra-Turrax® Tube Drive System enables quick fat extraction using a solvent mixture of cyclohexane/ethyl acetate/acetonitrile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!