A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bie Jia Jian pill ameliorates BDL-induced cholestatic hepatic fibrosis in rats by regulating intestinal microbial composition and TMAO-mediated PI3K/AKT signaling pathway. | LitMetric

AI Article Synopsis

  • Bie Jia Jian pill (BJJP), a traditional Chinese medicine, is commonly used to treat chronic liver disease, but its specific mechanism for addressing hepatic fibrosis (HF) is not fully understood.
  • This study aims to investigate how BJJP interacts with HF by examining its effects on the intestinal microbiota and utilizing advanced techniques like 16S rRNA sequencing and network pharmacology.
  • Findings reveal that BJJP improves liver damage and fibrosis in rat models of HF by regulating gut microbiota and inhibiting the PI3K/AKT signaling pathway influenced by trimethylamine N-oxide (TMAO).

Article Abstract

Ethnopharmacological Relevance: As a compound of traditional Chinese medicine (TCM), Bie Jia Jian pill (BJJP) is extensively used to treat the clinical chronic liver disease. Nevertheless, the specific mechanism through which BJJP affects hepatic fibrosis (HF) remains unknown.

Aim Of The Study: To explore the role and potential mechanism of BJJP involved in treating HF.

Materials And Methods: HF model of Sprague-Dawley (SD) rats was induced by a bile duct ligation (BDL). The function of BJJP involved in the intestinal microbiota (IM) and its metabolites in BDL-induced HF rats were explored through the 16S rRNA sequencing and untargeted metabolomics technologies. Network pharmacology was used to forecast mechanism underlying BJJP's anti-HF effects, which were validated in BDL-induced rats and trimethylamine N-oxide (TMAO)-induced LX-2 and HSC-T6 cells.

Results: BJJP effectively ameliorated pathological liver damage, inflammation, and fibrosis of the BDL-induced HF rats. BJJP regulated IM diversity and composition and interfered with trimethylamine (TMA)-flavin monooxygenase 3 (FMO3)-TMAO process. In vitro, BJJP significantly inhibited the TMAO-induced activation of hepatic stellate cells (HSCs) (rat HSC cell line, HSC-T6; human HSC cell line, LX-2). Network pharmacology results demonstrated that PI3K/AKT signal pathway is crucially involved in BJJP treatment of HF. Further research revealed that BJJP inhibited the PI3K/AKT signal pathway in BDL-induced HF rats. Moreover, TMAO activated the PI3K/AKT pathway, whereas BJJP suppressed TMAO-induced activation. Subsequent intervention with 740Y-P (the PI3K agonist) successfully neutralized the repression effect on PI3K/AKT signal pathway by BJJP.

Conclusion: These results clearly show that BJJP attenuates HF by regulating the IM, as well as inhibiting PI3K/AKT pathway mediated by TMAO.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.118910DOI Listing

Publication Analysis

Top Keywords

bdl-induced rats
16
pi3k/akt signal
12
signal pathway
12
bjjp
11
bie jia
8
jia jian
8
jian pill
8
hepatic fibrosis
8
mechanism bjjp
8
bjjp involved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!