AP-2α decreases TMZ resistance of recurrent GBM by downregulating MGMT expression and improving DNA damage.

Life Sci

The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha 410081, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China. Electronic address:

Published: November 2024

Aims: The incidence of recurrent gliomas is high, exerting low survival rates and poor prognoses. Transcription factor AP-2α has been reported to regulate the progression of primary glioblastoma (GBM). However, the function of AP-2α in recurrent gliomas is largely unclear.

Methods: The expression of AP-2α and O6-methylguanine DNA-methyltransferase (MGMT) was detected in recurrent glioma tissues and cell lines by Western blots, the regulation mechanisms between AP-2α/MGMT promoter and RA/AP-2α promoter were studied by luciferase reporter assays, EMSA, and chIP assays. The effects of AP-2α and TMZ/RA treatment on cell viability in vitro and in vivo were investigated by MTT assays, γHAX staining, comet assays and intracranial injection.

Key Findings: AP-2α expression negatively correlates with the expression of MGMT in glioma samples. AP-2α could directly bind with the promoter of the MGMT gene, suppresses transcriptional levels of MGMT and downregulate MGMT expression in TMZ-resistant U87MG-R and T98G cells, but TMZ treatment decreases AP-2α expression and increases MGMT expression. The extended TMZ treatment and increased TMZ concentrations reversed these effects. Moreover, AP-2α overexpression combines with TMZ to decrease cell viability, concurrently with improved DNA damage marker γHAX. Furthermore, retinoic acid (RA) activates RAR/RXR heterodimers, which bind to RA-responsive elements (RAREs) of the AP-2α promoter, and activates AP-2α expression in recurrent glioma cells. Finally, in intracranial relapsed glioma mouse model, both RA and TMZ could retard tumor development and prolong the mouse survival.

Significance: AP-2α activation by gene overexpression or RA treatment reveals the suppressive effects on glioma relapse, providing a novel therapeutic strategy against malignant refractory gliomas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2024.123111DOI Listing

Publication Analysis

Top Keywords

ap-2α
12
mgmt expression
12
ap-2α expression
12
expression
8
dna damage
8
recurrent gliomas
8
recurrent glioma
8
effects ap-2α
8
cell viability
8
tmz treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!