A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The dimer of human SVCT1 is key for transport function. | LitMetric

The dimer of human SVCT1 is key for transport function.

Biochim Biophys Acta Biomembr

Department of Life Sciences, Imperial College London, London SW7 2AZ, UK. Electronic address:

Published: December 2024

AI Article Synopsis

  • Humans and some primates cannot produce Vitamin C and rely on dietary sources, utilizing specific transporters, SVCT1 and SVCT2, to absorb it effectively.
  • Recent studies have revealed that SVCT1 operates as a dimer and uses an elevator-like mechanism to transport ascorbic acid into tissues, with its structure providing insights into how it binds substrates.
  • Investigations into human SVCT1 variants emphasize the significance of the dimer for transport function and proper localization within the cell membrane, highlighting the critical role of its C-terminus.

Article Abstract

Humans and other primates lack the ability to synthesize the essential nutrient, Vitamin C, which is derived exclusively from the diet. Crucial for effective vitamin C uptake are the Na dependent Vitamin C transporters, SVCT1 and SVCT2, members of the nucleobase ascorbate transporter (NAT) family. SVCT1 and 2 actively transport the reduced form of Vitamin C, ascorbic acid, into key tissues. The recent structure of the mouse SVCT1 revealed the molecular basis of substrate binding and that, like the other structurally characterised members of the NAT family, it exists as a closely associated dimer. SVCT1 is likely to function via the elevator mechanism with the core domain of each protomer able to bind substrate and move through the membrane carrying the substrate across the membrane. Here we explored the function of a range of variants of the human SVCT1, revealing a range of residues involved in substrate selection and binding, and confirming the importance of the C-terminus in membrane localisation. Furthermore, using a dominant negative mutant we show that the dimer is essential for transport function, as previously seen in the fungal homologue, UapA. In addition, we show that a localisation deficient C-terminal truncation of SVCT1 blocks correct localisation of co-expressed, associated wildtype SVCT1. These results clearly show the importance of the dimer in both correct SVCT1 trafficking and transport activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2024.184390DOI Listing

Publication Analysis

Top Keywords

svct1
9
human svct1
8
transport function
8
nat family
8
dimer
4
dimer human
4
svct1 key
4
transport
4
key transport
4
function
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!