Sarcopenia is a musculoskeletal disorder related to muscle mass and function; as the worldwide population ages, its growing prevalence means a decline in quality of life and an increased burden for public health systems. As sarcopenia is a reversible condition, its early diagnosis is of utmost importance. Consensus definitions and diagnosis protocols for sarcopenia have been evolving for a long time, and the identification of molecular pathways subjacent to sarcopenia is a growing research area. The use of liquid biopsies to identify circulating molecules does not provide information about specific regulatory pathways or biomarkers in relevant tissue, and the use of skeletal muscle biopsies from older people has many limitations. Complementary tools are therefore necessary to advance the knowledge of relevant molecular aspects. The development of experimental models, such as animal, cellular, or bioengineered tissue, together with knock-in or knock-out strategies, could therefore be of great interest. This narrative review will explore experimental models of healthy muscle and aged muscle cells as a tool for research on sarcopenia. We will summarize the literature and present relevant experimental models in terms of their advantages and disadvantages. All of the presented approaches could potentially contribute to the accurate and early diagnosis, follow-up, and possible treatment of sarcopenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2024.102534 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!