Biomass burning is a global source of climate- and health-affecting emissions. The impacts of biomass burning emissions (BBE) are tied to their complex and variable chemical makeup. For instance, the nitrogen content of BBE influences their capacity to absorb light, and therefore affect the Earth's radiative budget. Factors such as temperature, biomass type, or air flow rate during the combustion all modify the composition of BBE, making accurate characterization challenging. Herein, for the first time, principal component analysis (PCA) was applied to emissions gathered during laboratory-based combustion of wood and cow dung biomass in a tube furnace. A thermal desorption two dimensional time-of-flight gas chromatography mass spectrometry (TD-GC × GC-ToF-MS) setup was employed to separate and identify chemical species. By combining these techniques with a feature selection algorithm, we determined that low temperature and air flow rate lead to greater feature separation on PCA scores plots. Of the 729 variables used to construct the plots, 61 were identified as significant. These species - including sugars such as d-Allose and melezitose, as well as tracers such as levoglucosan and guaiacol - significantly differentiated emissions from wood versus cow dung biomass, especially at lower temperatures. In particular, combustion of either fuel at 0.2 slpm and 500 °C, lead to 20 times the variability in levoglucosan peak area over more efficient furnace parameters. Chemical species evolved only from dung burning contained on average 0.595 nitrogen atoms versus 0.515 for wood, indicating that a higher nitrogen content of the base fuel may not necessarily translate into emission of unique nitrogen containing species, potentially causing the underestimation of dung burning impacts. Overall, TD-GC × GC-ToF-MS coupled to PCA reliably separated emissions from wood and dung biomass while simultaneously identifying significant chemical features, displaying the suitability of this combination of techniques towards characterizing complex BBE matrices in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143445 | DOI Listing |
Plant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Dhahran Techno-Valley, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
The natural and laboratory-accelerated weathering of wood-plastic composites (WPCs) based on high-density polyethylene (HDPE) and polypropylene (PP) plastics was investigated in this study. Injection molded samples of WPCs with different loadings of wood fiber ranging from 0 to 36 wt.% of wood were subjected to laboratory-accelerated weathering and natural weathering.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.
This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary.
In recent years, the environmental impacts of plastic production and consumption have become increasingly significant, particularly due to their petroleum-based origins and the substantial waste management challenges they pose. Currently, global plastic waste production has reached 413.8 million metric tons across 192 countries, contributing notably to greenhouse gas emissions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!