Talanta
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China. Electronic address:
Published: January 2025
Herein, a novel copper/molybdenum bimetallic nanoclusters (Cu/Mo NCs) with intense blue emission were synthesized by using polyvinylpyrrolidone (PVP) as template and ascorbic acid as reducing agent. Owing to the synergistic effect between Cu and Mo, the fluorescence intensity of Cu/Mo NCs was significantly improved about 6-time than monometallic copper nanoclusters. A novel and sensitive ratiometric fluorescence and colorimetric dual-mode sensing platform for monitoring butyrylcholinesterase (BChE) was strategically constructed by the integration of Cu/Mo NCs with excellent optical properties and Co-Fe layered doubled hydroxide (CoFe-LDH) with superior peroxidase-like activity for the first time. In the presence of HO, nonfluorescent and colorless o-phenylenediamine (OPD) was oxidized to fluorescent and yellow 2,3-diaminophenazine (DAP) with maximum fluorescence emission peak at 564 nm and ultraviolet absorption peak at 418 nm by CoFe-LDH with peroxidase-like activity. Simultaneously, the generation of DAP could effectively quench Cu/Mo NCs fluorescence at 444 nm through the inner-filter effect (IFE). The hydrolysis of S-butyrylthiocholine iodide (BTCh) can be catalyzed by butyrylcholinesterase (BChE) to generate thiocholine (TCh) that could hinder the oxidation of OPD, leading to the fluorescence and ultraviolet absorption of DAP decreased, meanwhile, the fluorescence of Cu/Mo NCs recovered. The ratiometric fluorescence signal F/F and colorimetric system both performed a satisfactory response to the concentration of BChE in the range 0.5 to 90 U L and 1 to 100 U L with the LOD of 0.18 U L and 0.36 U L, respectively. The dual-mode sensing for BChE exhibited outstanding application potential in biosensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126973 | DOI Listing |
Talanta
January 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China. Electronic address:
Herein, a novel copper/molybdenum bimetallic nanoclusters (Cu/Mo NCs) with intense blue emission were synthesized by using polyvinylpyrrolidone (PVP) as template and ascorbic acid as reducing agent. Owing to the synergistic effect between Cu and Mo, the fluorescence intensity of Cu/Mo NCs was significantly improved about 6-time than monometallic copper nanoclusters. A novel and sensitive ratiometric fluorescence and colorimetric dual-mode sensing platform for monitoring butyrylcholinesterase (BChE) was strategically constructed by the integration of Cu/Mo NCs with excellent optical properties and Co-Fe layered doubled hydroxide (CoFe-LDH) with superior peroxidase-like activity for the first time.
View Article and Find Full Text PDFMikrochim Acta
February 2019
Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan.
A method is reported for the synthesis of highly luminescent copper/molybdenum bimetallic nanoclusters (Cu/Mo NCs) using cysteine as both a capping and reducing agent. The nanoclusters display bluish-green luminescence (excitation/emission peaks at 370/490 nm) and a relative quantum yield of 26%. The capped Cu/Mo NCs were used as a fluorescent probe for determination of the antineoplastic drug methotrexate (MTX) via an inner filter effect.
View Article and Find Full Text PDFFront Plant Sci
June 2015
UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, Normandie Université Caen, France ; UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, UNICAEN Caen, France ; UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions NCS, INRA Caen, France.
Higher plants have to cope with fluctuating mineral resource availability. However, strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare) and tree species (Quercus robur, Populus nigra, Alnus glutinosa) grown under field conditions were harvested regularly during their life span and analyzed to evaluate the net mobilization of 13 nutrients during leaf senescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.