A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Beach wracks microbiome and its putative function in plastic polluted Mediterranean marine ecosystem. | LitMetric

The coasts of the world's oceans and seas accumulate various types of floating debris, commonly known as beach wracks, including organic seaweeds, seagrass, and ubiquitous anthropogenic waste, mainly plastic. Beach wrack microbiome (MB), surviving in the form of a biofilm, ensures decomposition and remineralization of wracks, but can also serve as a vector of potential pathogens in the environment. Through the interdisciplinary approach and comprehensive sampling design that includes geological analysis of the sediment, plastic debris composition analysis (ATR-FTIR) and application of 16S rRNA gene metabarcoding of beach wrack MBs, this study aims to describe MB in relation to beach exposure, sediment type and plastic pollution. Major contributors in beach wrack MB were Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Verrucomicrobia and Firmicutes and there was significant dissimilarity between sample groups with Vibrio, Cobetia and Planococcus shaping the Exposed beach sample group and Cyclobacteriaceae and Flavobacterium shaping the Sheltered beach sample group. Our results suggest plastisphere MB is mostly shaped by beach exposure, type of seagrass, sediment type and probably beach naturalness with heavy influence of seawater MB and shows no significant dissimilarity between MBs from a variety of microplastics (MP). Putative functional analysis of MB detected plastic degradation and potential human pathogen bacteria in both beach wrack and seawater MB. The research provides the next crucial step in beach wrack MP accumulation research, MB composition and functional investigation with focus on beach exposure as an important variable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106769DOI Listing

Publication Analysis

Top Keywords

beach wrack
20
beach
13
beach exposure
12
beach wracks
8
sediment type
8
beach sample
8
sample group
8
plastic
5
wrack
5
wracks microbiome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!