Overexpression of TdNACB improves the drought resistance of rice.

Plant Physiol Biochem

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • * A wild emmer introgression line, BAd7-209, showed greater drought resistance than the drought-resistant wheat variety Zhongmai 175, with transcriptome analysis revealing significant gene expression changes in response to drought.
  • * The study identified TdNACB as a key transcription factor that enhances drought resistance in crops like rice by increasing proline content and boosting enzyme activity related to reactive oxygen species scavenging, providing potential candidate genes for improving wheat drought resistance.

Article Abstract

Drought stress greatly affects disrupts the productivity, ecological structure, physiological and biochemical activities of wheat at different growth stages. However, drought stress tolerance is a complex quantitative trait and involves multiple metabolic pathways. We found that a wild emmer introgression line BAd7-209 had stronger drought resistance compared with drought resistant wheat Zhongmai 175. The transcriptome analysis found 14,284, 22,383 and 21,451 genes had expression corresponding responsed to drought stress at 24h, 48h, 120h, respectively and significantly enriched in 'Arginine and proline metabolism' and 'Peroxisome' in BAd7-209. 1666 transcription factors (TFs) related responsed to drought stress in which TdNACB showed high expression at 24h, 48h and 120h and had the closest relationship with TaNAC48 and OsNAC6 in phylogenetic analysis. Overexpression of TdNACB significantly enhanced drought resistance in rice and overexpression lines had significantly higher CAT, POD and SOD activity, Pro content and lower MDA content than those of the WT under drought stress. The result demonstrated that TdNACB positively regulates drought resistance through increasing proline content and enhancing activity of enzyme related to ROS scavenging. The results of this study provides candidate genes for improving wheat drought resistance and guide as reference for studying the molecular mechanisms of wheat drought resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109157DOI Listing

Publication Analysis

Top Keywords

drought resistance
24
drought stress
20
drought
12
overexpression tdnacb
8
resistance rice
8
responsed drought
8
24h 48h
8
48h 120h
8
wheat drought
8
resistance
6

Similar Publications

Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.

Plant Physiol Biochem

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Electronic address:

Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth.

View Article and Find Full Text PDF

ABA-auxin cascade regulates crop root angle in response to drought.

Curr Biol

January 2025

Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecular mechanisms in regulating RSA, especially in cereal crops, remain unclear. In this study, we report a new mechanism whereby ABA mediates local auxin biosynthesis to regulate root gravitropic response, thereby controlling the alteration of RSA in response to drought in cereal crops.

View Article and Find Full Text PDF

In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme widely involved in glycolysis in animal cells and in non-metabolic processes, including apoptosis and the regulation of gene expression. GAPDH is a ubiquitous protein that plays a pivotal role in plant metabolism and handling of stress responses. However, its function in plant stress resistance remains unknown.

View Article and Find Full Text PDF

from Improves Drought Tolerance by Reducing Stomatal Aperture and Inducing ABA Receptor Family Genes in Transgenic Poplar Plants.

Int J Mol Sci

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

The basic helix-loop-helix (bHLH) family members are involved in plant growth and development, physiological metabolism, and various stress response processes. is a major turpentine-producing and wood-producing tree in seasonally dry areas of southern China. Its economic and ecological values are well known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!