A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bjerrum defects in s-II gas hydrate. | LitMetric

Bjerrum defects in s-II gas hydrate.

J Mol Graph Model

Department of Chemistry, Süleyman Demirel University, 32260 Isparta, Turkey. Electronic address:

Published: December 2024

AI Article Synopsis

  • The study explores the energy and structural characteristics of Bjerrum defects in structure II gas hydrates using advanced computational methods.
  • It finds that these defects can influence the stability and behavior of guest molecules, like THF, within the hydrate structure by forming hydrogen bonds.
  • The research challenges previous understandings by indicating that guest-induced Bjerrum defects involve both L and D components, providing new insights that could affect the interpretation of related experimental properties.

Article Abstract

The energy and structure of Bjerrum defects in structure II gas hydrates were investigated by using first-principle calculations for finite-size clusters and periodic 3D lattice systems. The formation energies of these defects were calculated for the first time when the cages of the structure II structure were completely empty and the large cage was filled with a THF molecule. Analogous to findings in ice structures, one of the hydrogen atoms forming the D defect was noted to orient toward the cage. If the excess proton resides in the large cage, it acts as an attraction center for the polar guest molecule, i.e., THF. Therefore, the large cage guest THF molecule stabilizes the D/L defect pair and isolated D/L defect formation energies by forming hydrogen bonds with the D defect. In such cases, the defect structure representing a D/L defect pair containing a THF molecule interacting with one of the hydrogen atoms of the D defect mirrors the guest-induced ones. Notably, the classical Bjerrum defect and the guest-induced Bjerrum defect exhibit a similar phenomenon in defective structures. Contrary to existing literature, it is evident that guest-induced Bjerrum defects involve both the L and D components. The insights gained from this study could potentially offer an alternative perspective to understand various experimental observations, such as those related to dielectric and NMR properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2024.108878DOI Listing

Publication Analysis

Top Keywords

bjerrum defects
12
large cage
12
thf molecule
12
d/l defect
12
defect
9
formation energies
8
hydrogen atoms
8
defect pair
8
bjerrum defect
8
guest-induced bjerrum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!