This study reported the synthesis and characterization of chitosan-copper nanoparticles (Ch-CuNPs) using a 1% copper sulfate solution in 0.2% w/v chitosan. The Ch-CuNPs, displaying a stable brick-red hue, showed an absorption peak at 572 nm, indicative of monodisperse nanoparticle formation and surface plasmon resonance. X-ray diffraction confirmed the face-centered cubic structure with peaks at 36.78°, 43.38°, 50.56°, and 74.26°, and an average particle size of 87-89 nm. FTIR analysis showed interactions between chitosan and copper, particularly around 3370 -3226 cm⁻¹, 1633 cm⁻¹, and 680 cm⁻¹. In vitro assays revealed that Ch-CuNPs inhibited Macrophomina phaseolina growth by 18-71% at 0.03-0.09% concentrations, achieving complete inhibition at 0.12-0.15%, with PCA analysis confirming that growth peaked at lower concentrations and sharply declined at higher levels. Ch-CuNPs also altered fungal morphology and enzyme activity, with notable degradation at higher concentrations. The Cu uptake by the fungus peaked at 29.9% with 0.03% Ch-CuNPs and decreased at higher concentrations. FTIR analysis showed shifts and disappearance of peaks in fungal biomass treated with Ch-CuNPs, indicating molecular interactions and potential structural changes. This study underscores the potential of Ch-CuNPs as an effective antifungal agent and elucidates their interaction mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455915PMC
http://dx.doi.org/10.1038/s41598-024-74949-6DOI Listing

Publication Analysis

Top Keywords

macrophomina phaseolina
8
ftir analysis
8
higher concentrations
8
ch-cunps
7
chitosan-mediated copper
4
copper nanohybrid
4
nanohybrid attenuates
4
attenuates virulence
4
virulence necrotrophic
4
necrotrophic fungal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!