This study examines the influence of climate change on hydrological processes, particularly runoff, and how it affects managing water resources and ecosystem sustainability. It uses CMIP6 data to analyze changes in runoff patterns under different Shared Socioeconomic Pathways (SSP). This study also uses a Deep belief network (DBN) and a Modified Sparrow Search Optimizer (MSSO) to enhance the runoff forecasting capabilities of the SWAT model. DBN can learn complex patterns in the data and improve the accuracy of runoff forecasting. The meta-heuristic algorithm optimizes the models through iterative search processes and finds the optimal parameter configuration in the SWAT model. The Optimal SWAT Model accurately predicts runoff patterns, with high precision in capturing variability, a strong connection between projected and actual data, and minimal inaccuracy in its predictions, as indicated by an ENS score of 0.7152 and an R coefficient of determination of 0.8012. The outcomes of the forecasts illustrated that the runoff will decrease in the coming years, which could threaten the water source. Therefore, managers should manage water resources with awareness of these conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455851 | PMC |
http://dx.doi.org/10.1038/s41598-024-74269-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!