Electrolytes play a critical role in designing next-generation battery systems, by allowing efficient ion transfer, preventing charge transfer, and stabilizing electrode-electrolyte interfaces. In this work, we develop a differentiable geometric deep learning (GDL) model for chemical mixtures, DiffMix, which is applied in guiding robotic experimentation and optimization towards fast-charging battery electrolytes. In particular, we extend mixture thermodynamic and transport laws by creating GDL-learnable physical coefficients. We evaluate our model with mixture thermodynamics and ion transport properties, where we show improved prediction accuracy and model robustness of DiffMix than its purely data-driven variants. Furthermore, with a robotic experimentation setup, Clio, we improve ionic conductivity of electrolytes by over 18.8% within 10 experimental steps, via differentiable optimization built on DiffMix gradients. By combining GDL, mixture physics laws, and robotic experimentation, DiffMix expands the predictive modeling methods for chemical mixtures and enables efficient optimization in large chemical spaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455955 | PMC |
http://dx.doi.org/10.1038/s41467-024-51653-7 | DOI Listing |
Sci Rep
December 2024
Creative Robotics Lab, UNSW, Sydney, 2021, Australia.
Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery.
View Article and Find Full Text PDFFront Comput Neurosci
December 2024
School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
This study aims to enhance the classification accuracy of adverse events associated with the da Vinci surgical robot through advanced natural language processing techniques, thereby ensuring medical device safety and protecting patient health. Addressing the issues of incomplete and inconsistent adverse event records, we employed a deep learning model that combines BERT and BiLSTM to predict whether adverse event reports resulted in patient harm. We developed the Bert-BiLSTM-Att_dropout model specifically for text classification tasks with small datasets, optimizing the model's generalization ability and key information capture through the integration of dropout and attention mechanisms.
View Article and Find Full Text PDFFront Robot AI
December 2024
Robot Learning Laboratory, Instituto de Ciências Matemáticas e de Computação (ICMC), University of São Paulo (USP), SãoCarlos, Brazil.
Research on social assistive robots in education faces many challenges that extend beyond technical issues. On one hand, hardware and software limitations, such as algorithm accuracy in real-world applications, render this approach difficult for daily use. On the other hand, there are human factors that need addressing as well, such as student motivations and expectations toward the robot, teachers' time management and lack of knowledge to deal with such technologies, and effective communication between experimenters and stakeholders.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Introduction: During tasks like minimally invasive surgery (MIS), various factors can make working environment not be ergonomic, and those situations will accumulate fatigue in the surgeon's muscles which will inevitably lead to poor surgical performance. Therefore, there has been a need for technical solutions to solve this problem and one of the methods is exoskeleton robots.
Methods: We designed a passive shoulder exoskeleton whose workspace could be used for MIS to assist the surgeon's movements and performed computational and clinical validation.
J Integr Neurosci
December 2024
Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China.
Background: Motor imagery (MI) plays an important role in brain-computer interfaces, especially in evoking event-related desynchronization and synchronization (ERD/S) rhythms in electroencephalogram (EEG) signals. However, the procedure for performing a MI task for a single subject is subjective, making it difficult to determine the actual situation of an individual's MI task and resulting in significant individual EEG response variations during motion cognitive decoding.
Methods: To explore this issue, we designed three visual stimuli (arrow, human, and robot), each of which was used to present three MI tasks (left arm, right arm, and feet), and evaluated differences in brain response in terms of ERD/S rhythms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!