We report vitrimer-like elastomers that exhibit significantly fast stress relaxation using carboxy exchange via the conjugate substitution reaction of α-(acyloxymethyl) acrylate skeletons. This network design is inspired by a small-molecule model that shows the carboxy exchange reaction even at ambient temperature in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO). The acrylate and acrylic acid copolymers are cross-linked using bis[α-(bromomethyl)acrylates] and doped with 10 wt% DABCO, exhibiting processability to obtain a transparent film by hot pressing. The high-speed bond exchange in the network, validated by stress-relaxation tests, allows quick molding with household iron. In addition, the material is applied as an adhesion sheet for plastic and metal substrates. Because dynamic cross-linking with the proposed bond exchange mechanism can be implemented for any polymer bearing carboxyl pendants, our approach can be applied to versatile backbones, which must thus be meaningful in the practical sense.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455856PMC
http://dx.doi.org/10.1038/s41467-024-53043-5DOI Listing

Publication Analysis

Top Keywords

carboxy exchange
12
vitrimer-like elastomers
8
exchange conjugate
8
conjugate substitution
8
substitution reaction
8
bond exchange
8
exchange
5
elastomers rapid
4
rapid stress-relaxation
4
stress-relaxation high-speed
4

Similar Publications

Pendrin (SLC26A4) is an anion exchanger expressed in epithelial cells of kidney and lung. Pendrin inhibition is a potential treatment approach for edema, hypertension and inflammatory lung diseases. We have previously identified first-in-class pendrin inhibitors by high-throughput screening, albeit with low potency for pendrin inhibition (IC ∼10 μM).

View Article and Find Full Text PDF

Redox hopping is the primary method of electron transport through redox-active metal-organic frameworks (MOFs). While redox hopping adequately supports the electrocatalytic application of MOFs, the fundamental understandings guiding the design of redox hopping MOFs remain nascent. In this study, we probe the rate of electron and hole transport through a singular MOF scaffold to determine whether the properties of the MOF promote the transport of one carrier over the other.

View Article and Find Full Text PDF

We report vitrimer-like elastomers that exhibit significantly fast stress relaxation using carboxy exchange via the conjugate substitution reaction of α-(acyloxymethyl) acrylate skeletons. This network design is inspired by a small-molecule model that shows the carboxy exchange reaction even at ambient temperature in the presence of 1,4-diazabicyclo[2.2.

View Article and Find Full Text PDF

The human cytomegalovirus (HCMV) glycoprotein B (gB) is the viral fusogen required for entry into cells and for direct cell-to-cell spread of the virus. We have previously demonstrated that the exchange of the carboxy-terminal domain (CTD) of gB for the CTD of the structurally related fusion protein G of the vesicular stomatitis virus (VSV-G) resulted in an intrinsically fusion-active gB variant (gB/VSV-G). In this present study, we employed a dual split protein (DSP)-based cell fusion assay to further characterize the determinants of fusion activity in the CTD of gB.

View Article and Find Full Text PDF

Distinct and overlapping RGS14 and RGS12 actions regulate NPT2A-mediated phosphate transport.

Biochem Biophys Res Commun

November 2024

Laboratory for GPCR Biology, Departments of Pharmacology and Chemical Biology, USA; Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA. Electronic address:

Parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) control serum phosphate levels by downregulating the renal Na-phosphate transporter NPT2A, thereby decreasing phosphate absorption and augmenting urinary excretion. This mechanism requires NHERF1, a PDZ scaffold protein, and is governed by the regulator of G protein signaling-14 (RGS14), which harbors a carboxy-terminal PDZ ligand that binds NHERF1. RGS14 is part of a triad of structurally related RGS proteins that includes RGS12 and RGS10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!