Capturing carbon to mitigate climate change: storage or use?

Trends Biotechnol

Innogen Institute, University of Edinburgh, Old Surgeons Hall, High School Yards, Edinburgh EH1 1LZ, UK. Electronic address:

Published: October 2024

Reducing atmospheric CO is vital to combat climate change. Alongside reducing emissions, it is essential to capture atmospheric CO and either use it or store it, depending on which option yields the best outcomes. Government policies should coordinate actions in areas such as the bioeconomy and avoid creating perverse incentives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2024.09.003DOI Listing

Publication Analysis

Top Keywords

climate change
8
capturing carbon
4
carbon mitigate
4
mitigate climate
4
change storage
4
storage use?
4
use? reducing
4
reducing atmospheric
4
atmospheric vital
4
vital combat
4

Similar Publications

Assessing the distribution pattern of Saussurea medusa under climate change using an optimized MaxEnt model in Qinghai-Xizang Plateau.

Environ Monit Assess

January 2025

Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.

Saussurea medusa is a rare alpine plant with significant medicinal value. To better understand the changes in its habitat in the context of climate change, this study used an optimized MaxEnt model to predict the current and future habitat of S. medusa under four shared socioeconomic pathways (SSPs) across three time periods (current, mid-century, and end-century) based on three climate system models.

View Article and Find Full Text PDF

This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.

View Article and Find Full Text PDF

Species distribution modeling is extensively used for predicting potential distributions of invasive species. However, an ensemble modeling approach has been less frequently used particularly pest species. The bird cherry-oat aphid Rhopalosiphum padi L.

View Article and Find Full Text PDF

Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.

Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.

View Article and Find Full Text PDF

Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!