The mechanism of arsenic resistance in bacteria is under studied and still lacks a clear understanding despite of wide research work. The advanced technologies can help in analysing the arsenic bioremediating bacteria at a molecular level. With this line of idea, highly efficient arsenic bioremediating S. maltophilia was subjected to extensive analysis to understand the mechanism of arsenic resistance and bioremediation. The cell surface analysis revealed that S. maltophilia induces only slight changes in cell surface in the presence of arsenic. Whereas, TEM analysis has indicated the bioaccumulation of arsenic in S. maltophilia. Also, arsenic was found to generate ROS in a concentration dependant manner, and in response, S. maltophilia activated SOD, catalase, thioredoxin reductase etc. to manage oxidative stress which is very much crucial in managing arsenic toxicity. S. maltophilia was found to possess genes such as arsC, aoxB, aoxC and aioA. These genes are involved in arsenic reduction and oxidation. Transcriptomics and proteomics analysis have shown that S. maltophilia detoxifies arsenic by upregulating ars operon, arsH, BetB etc. which are responsible for arsenic reduction, efflux methylation, oxidation etc. A detailed molecular mechanism of arsenic bioremediation in S. maltophilia was put forth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2024.125066 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China. Electronic address:
Arsenic in the environment, such as sodium arsenic (NaAsO), is a frequently occurring hazard that has been linked to nonalcoholic steatohepatitis (NASH). Our prior research established the involvement of ferroptosis in arsenic-induced NASH, but the precise underlying mechanisms remain elusive. Here, we found that exposure to NaAsO had a suppressive effect on the expression of CDGSH iron-sulfur domain-containing protein 2 (CISD2) at the protein and gene levels, and overexpression of CISD2 inhibited NaAsO-induced ferroptosis and NASH.
View Article and Find Full Text PDFClin Kidney J
January 2025
Department of Nephrology, Dialysis, Transplantation, Dr C. I. Parhon Hospital, Iasi, Romania.
The timeless tale of Snow White, with its emphasis on fair skin as a beauty ideal, mirrors a contemporary issue in nephrology: the harmful impact of skin-whitening creams on kidney health. Fairness creams have deeply embedded themselves in global society, driven by a pervasive obsession with lighter skin tones as a symbol of beauty. This widespread use reflects deeply rooted cultural beliefs and social norms, despite the significant health risks associated with these products.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China. Electronic address:
To assess the environmental status of an abandoned aquaculture and breeding area in the northeast coast of the Hainan Island, surface and well water, sediment and surface soils were sampled and analyzed for conventional physicochemical properties, heavy metals and antibiotics. Metagenome tests were also conducted to determine the composition and diversity of the microbial community in typical habitats. Affected by the discharge of wastewater from higher-place pond aquaculture, coastal freshwater rivers have undergone significant salinization, Cl and Na were as high as 4.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium. Electronic address:
A population model is presented to study the combined effects of ionising radiation and chemical pollutants on wildlife. The model is based on first order, non-linear and logistic differential equations combining mortality, morbidity and reproduction phenomena with life history data and ecological interactions. Acclimation is considered as a possible mechanism to study theoretically this effect at low levels of radiation or chemical concentration.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China. Electronic address:
Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!