Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Furin cleavage site (FCS) of the SARS-CoV-2 S protein, which connects the S1/S2 junction, is essential for facilitating fusion with the host cells. Wild-type (Wt) SARS-CoV-2 S protein, PDB ID: 6yvb, lacks a sequence of amino acid residues, including the FCS that links the S1/S2 junction. For the first time, we demonstrated that a stretch of 14 amino acid residues (677QTNSPRRARSVASQ689) forms an antiparallel β-sheet comprising of PRRAR sequence in the FCS within a short loop. Upon comparing the loop content of the S1/S2 junction with that of Wt SARS-CoV-2 containing PRRAR in the FCS, we observed a decrease in antiparallel β-sheet content and an increase in loop content in the B.1.1.7 variant with HRRAR in the FCS. This short loop within antiparallel β-sheet can serve as a docking site for various proteases, including TMPRSS2 and α1AT. We performed a 300-ns simulation of the SARS-CoV-2 receptor binding domain (RBD) using several antibacterial and antiviral ligands commonly used to treat various infections. Our findings indicate that the receptor binding domain (RBD) comprising the receptor binding motif (RBM) utilizes β6 and a significant portion of the loop to bind with ligands, suggesting its potential for treating SARS-CoV-2 infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!