Ultrasound-assisted fabrication of chitosan-hydroxypropyl methylcellulose nanoemulsions loaded with thymol and cinnamaldehyde: Physicochemical properties, stability, and antifungal activity.

Int J Biol Macromol

State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China. Electronic address:

Published: November 2024

This study investigated the influence of chitosan (CH) and hydroxypropyl methylcellulose (H), along with ultrasound power, on the physicochemical properties, antifungal activity, and stability of oil-in-water (O/W) nanoemulsions containing thymol and cinnamaldehyde in a 7:3 (v/v) ratio. Eight O/W formulations were prepared using CH, H, and a 1:1 (v/v) blend of CH and H, both with and without ultrasonication (U). Compared to untreated samples, U-treated nanoemulsions had lower droplet sizes (433-301 nm), polydispersity index (0.42-0.47), and zeta potential (-0.42-0.77 mV). The U treatment decreased L* and b* values, increased a* color attribute values, and increased apparent viscosity (0.26-2.17) at the same shear rate. After 28 days, microbiological testing of nanoemulsions treated with U showed counts below the detection limits (< 2 log CFU mL). The U-treated nanoemulsions exhibited stronger antifungal effects against R. stolonifer, with the NE/CH-U and NE/CH-H-U formulations demonstrating the lowest minimum inhibitory and fungicidal concentrations, measured at 0.12 and 0.24 μL/mL, respectively. On day 28, U-treated nanoemulsions demonstrated higher ionic, thermal, and physical stability than untreated samples. These findings suggest that the stability and antifungal efficacy of polysaccharide-based nanoemulsions may be improved by ultrasonic treatment. This study paves the way for innovative, highly stable nanoemulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136278DOI Listing

Publication Analysis

Top Keywords

u-treated nanoemulsions
12
nanoemulsions
8
thymol cinnamaldehyde
8
physicochemical properties
8
stability antifungal
8
antifungal activity
8
untreated samples
8
values increased
8
ultrasound-assisted fabrication
4
fabrication chitosan-hydroxypropyl
4

Similar Publications

Ultrasound-assisted fabrication of chitosan-hydroxypropyl methylcellulose nanoemulsions loaded with thymol and cinnamaldehyde: Physicochemical properties, stability, and antifungal activity.

Int J Biol Macromol

November 2024

State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China. Electronic address:

This study investigated the influence of chitosan (CH) and hydroxypropyl methylcellulose (H), along with ultrasound power, on the physicochemical properties, antifungal activity, and stability of oil-in-water (O/W) nanoemulsions containing thymol and cinnamaldehyde in a 7:3 (v/v) ratio. Eight O/W formulations were prepared using CH, H, and a 1:1 (v/v) blend of CH and H, both with and without ultrasonication (U). Compared to untreated samples, U-treated nanoemulsions had lower droplet sizes (433-301 nm), polydispersity index (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!