Effects of manure and nitrogen fertilization on soil microbial carbon fixation genes and associated communities in the Loess Plateau of China.

Sci Total Environ

Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China. Electronic address:

Published: December 2024

The effects of long-term fertilization on soil carbon (C) cycling have been a key focus of agricultural sustainable development research. However, the influences of different fertilization treatments on soil microbial C fixation profiles are still unclear. Metagenomics technology and multivariate analysis were employed to inquire changes in soil properties, soil microbial C fixation genes and associated bacterial communities, and the influence of dominant soil properties on C fixation genes. The contents of soil C and nitrogen fractions were signicficantly higher in manure or combined with nitrogen fertilization (NM) than other treatments. The composition of soil microbial C fixation genes and associated bacterial communities varied among different fertilization treatments. Compared with other treatments, the total abundance of microbial C fixation genes and the abundance of Proteobacteria were significantly higher in NM than in other treatments, as well as the abundances of C fixation genes involved in dicarboxylate/4-hydroxybutyrate cycle and reductive citrate cycle. Key functional genes and main bacterial communities presented in the middle of the co-occurrence network. Soil organic carbon, total nitrogen, and microbial biomass nitrogen were the dominant soil properties influencing microbial C fixation genes and associated bacterial communitis. Fertilization increased the abundance of C fixation genes by affecting the changes in bacterial communities abundance mediated by soil properties. Overall, elucidating the responses of soil microbial C fixation genes and associated communities to different fertilization will enhance our understanding of the processes of soil C fixation in farmland.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176581DOI Listing

Publication Analysis

Top Keywords

fixation genes
36
microbial fixation
24
soil microbial
20
genes associated
20
soil properties
16
bacterial communities
16
soil
13
fertilization treatments
12
associated bacterial
12
fixation
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!