Background And Objective: Accurate prostate dissection is crucial in transanal surgery for patients with low rectal cancer. Improper dissection can lead to adverse events such as urethral injury, severely affecting the patient's postoperative recovery. However, unclear boundaries, irregular shape of the prostate, and obstructive factors such as smoke present significant challenges for surgeons.
Methods: Our innovative contribution lies in the introduction of a novel video semantic segmentation framework, IG-Net, which incorporates prior surgical instrument features for real-time and precise prostate segmentation. Specifically, we designed an instrument-guided module that calculates the surgeon's region of attention based on instrument features, performs local segmentation, and integrates it with global segmentation to enhance performance. Additionally, we proposed a keyframe selection module that calculates the temporal correlations between consecutive frames based on instrument features. This module adaptively selects non-keyframe for feature fusion segmentation, reducing noise and optimizing speed.
Results: To evaluate the performance of IG-Net, we constructed the most extensive dataset known to date, comprising 106 video clips and 6153 images. The experimental results reveal that this method achieves favorable performance, with 72.70% IoU, 82.02% Dice, and 35 FPS.
Conclusions: For the task of prostate segmentation based on surgical videos, our proposed IG-Net surpasses all previous methods across multiple metrics. IG-Net balances segmentation accuracy and speed, demonstrating strong robustness against adverse factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2024.108443 | DOI Listing |
Nanomaterials (Basel)
January 2025
Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61200 Brno, Czech Republic.
Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE).
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Instrumentation Science, Dynamic Measurement of Ministry of Education, North University of China, Taiyuan, 030051, Shanxi, China.
This paper propose a significantly enhanced YOLOv8 model specifically designed for detecting tongue fissures and teeth marks in Traditional Chinese Medicine (TCM) diagnostic images. By integrating the C2f_DCNv3 module, which incorporates Deformable Convolutions (DCN), replace the original C2f module, enabling the model to exhibit exceptional adaptability to intricate and irregular features, such as fine fissures and teeth marks. Furthermore, the introduction of the Squeeze-and-Excitation (SE) attention mechanism optimizes feature weighting, allowing the model to focus more accurately on key regions of the image, even in the presence of complex backgrounds.
View Article and Find Full Text PDFNat Protoc
January 2025
Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA.
Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
The integration of radar technology into smart furniture represents a practical approach to health monitoring, circumventing the concerns regarding user convenience and privacy often encountered by conventional smart home systems. Radar technology's inherent non-contact methodology, privacy-preserving features, adaptability to diverse environmental conditions, and high precision characteristics collectively establish it a compelling alternative for comprehensive health monitoring within domestic environments. In this paper, we introduce a millimeter (mm)-wave radar system positioned strategically behind a seat, featuring an algorithm capable of identifying unique cardiac waveform patterns for healthy subjects.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Environmental Studies Center (CEA), São Paulo State University (UNESP), Avenida 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
Background: The Diffusive Gradients in Thin Films (DGT) technique has become the most widely used passive sampling method for inorganic compounds. This widespread adoption can be partly attributed to the development of new binding phases that facilitate the sampling of numerous analytes. In contrast, to date, the DGT sampler for inorganic compounds has not seen any significant design improvements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!