New finding based on Comparative Toxicogenomics Database: Hepatic YY1 mediates drug-induced liver injury.

Phytomedicine

State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • YY1 is a key player in various liver diseases and its role in drug-induced liver injury (DILI) has been largely overlooked by researchers.
  • The study conducted thorough investigations involving multiple toxic compounds associated with YY1, revealing that many of these compounds are hepatotoxic, including well-known drugs.
  • Findings suggest that YY1 significantly contributes to DILI mechanisms, particularly through cholestasis, where it is up-regulated by hepatotoxic agents and negatively influences critical liver functions, demonstrating its potential as a focal point for understanding and addressing drug-induced liver injuries.

Article Abstract

Background: YY1 plays a crucial part in the onset and progression of numerous liver diseases, yet the significant contribution of YY1 to drug-induced liver injury (DILI) appears to have been underestimated by researchers.

Purpose: To reveal the underlying role of YY1 in DILI.

Method: The compounds that interact with YY1 were queried in the Comparative Toxicogenomics Database (CTD), with the majority found to be hepatotoxic, which includes certain widely used drugs. Molecular docking and SPR characterized the robust binding of hepatotoxic compounds to YY1. The duty of YY1 in DILI was investigated in Diosbulbin B (DIOB), a recently identified hepatotoxic compound that tightly associates with YY1, and further validated on ANIT, LCA, APAP, and CDDP. Transcriptomic analysis disclosed the underlying mechanisms involved in DIOB-induced liver injury. RT-qPCR, immunohistochemistry, immunofluorescence, western blotting, and cellular transfection techniques were employed to validate the specific mechanism.

Results: Among the 94 compounds affecting YY1 expression in the CTD, 59 compounds exhibited hepatotoxicity, showing close interactions with YY1 and almost consistent binding sites by molecular docking. The SPR validated the tough binding of several hepatotoxic compounds to YY1, including five FDA-approved hepatotoxic drugs. Mechanistically, the involvement of YY1 in DILI was uncovered through the cholestasis lens, mice hepatic YY1 was up-regulated by hepatotoxic DIOB and transcriptionally inhibited FXR and its downstream BSEP and MRP2 expression, initiating early in cholestatic liver injury and persisting to drive the progression of cholestasis. ANIT and LCA-induced model of cholestasis provided evidence for the hypothesis that YY1 frequently mediates drug induced cholestasis (DIC). APAP and CDDP indicated that YY1 may also be involved in hepatocellular and mixed type DILI.

Conclusion: YY1 widely mediated the development of DIC and also might be engaged in other types of DILI. YY1 presented a common target for hepatotoxic medications and the targeting of liver YY1 for drug development may offer a novel approach for managing DILI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.156102DOI Listing

Publication Analysis

Top Keywords

yy1
18
liver injury
16
compounds yy1
12
comparative toxicogenomics
8
toxicogenomics database
8
hepatic yy1
8
drug-induced liver
8
molecular docking
8
docking spr
8
binding hepatotoxic
8

Similar Publications

Dynamic interplay of Sp1, YY1, and DUX4 in regulating FRG1 transcription with intricate balance.

Biochim Biophys Acta Mol Basis Dis

December 2024

National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India. Electronic address:

Maintaining precise levels of FRG1 is vital. It's over-expression is tied to muscular dystrophy, while reduced levels are linked to tumorigenesis. Despite extensive efforts to characterize FRG1 expression and downstream molecular signaling, a comprehensive understanding of its regulation has remained elusive.

View Article and Find Full Text PDF

Background: RPN1, also known as ribophorin I (RPN1), is a type I transmembrane protein that plays an important role in glycosylation. However, the effects of RPN1 on cancer progression and immune evasion in breast cancer (BC) have not been identified.

Materials And Methods: The expression of RPN1 was evaluated using RT-qPCR and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Angioimmunoblastic T-cell lymphoma (AITL) is a kind of aggressive T-cell lymphoma with significant enrichment of non-malignant tumor microenvironment (TME) cells. However, the complexity of TME in AITL progression is poorly understood. We performed single-cell RNA-Seq (scRNA-seq) and imaging mass cytometry (IMC) analysis to compare the cellular composition and spatial architecture between relapsed/refractory AITL (RR-AITL) and newly diagnosed AITL (ND-AITL).

View Article and Find Full Text PDF

Matrix Gla protein (MGP) is a vitamin K-dependent γ-carboxylated protein that was initially identified as a physiological inhibitor of ectopic calcification, primarily affecting cartilage and the vascular system. Mutations in the gene were found to be responsible for the Keutel syndrome, a condition characterized by abnormal calcifications in the cartilage, lungs, brain, and vascular system. has been shown to be dysregulated in several tumors, including cervical, ovarian, urogenital, and breast cancers.

View Article and Find Full Text PDF

Early embryonic development is a complex process where undifferentiated cells lose their pluripotency and start to gastrulate. During gastrulation, three germ layers form, giving rise to different cell lineages and organs. This process is regulated by transcription factors and epigenetic regulators, including non-canonical polycomb repressive complex 1s (ncPRC1s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!