Fluorescence imaging technology has emerged as a powerful tool for studying intricate mitochondrial morphology within living cells. However, the need for fluorophores with stable fluorescence intensity and low phototoxicity poses significant challenges, particularly for long-term live-cell mitochondrial monitoring. To address this, we introduce the confinement fluorescence effect (CFE) into the design of fluorophores. This strategy involves confining small-molecule fluorophores within a silicon suboxide network structure of nanoparticles (CEF-NPs), which restricts molecular rotation, resulting in the suppression of non-radiative transition and the isolation of encapsulated fluorophores from surrounding quenching factors. CFE-NPs (SY2@SiOx) exhibit exceptional properties, such as high fluorescence intensity (80-fold) and reduced phototoxicity (0.15-fold). Furthermore, the TPP + -functionalized CFE-NPs (SY2@SiOxTPP) demonstrated efficacy in mitochondrial imaging and mitochondrial dynamics monitoring. Biochemistry assays indicated that SY2@SiOxTPP exhibits significantly lower phototoxicity to mitochondrial functions compared to both small-molecule fluorophore and commercial Mito Tracker. This approach allows for the long-term dynamic monitoring of mitochondrial morphological changes through fluorescence imaging, without impairing mitochondrial functionality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2024.116823 | DOI Listing |
Quant Plant Biol
September 2024
Department of Life Sciences, Imperial College London, London, UK.
In this work, we present a quantitative comparison of the cell division dynamics between populations of intact and regenerating root tips in the plant model system To achieve the required temporal resolution and to sustain it for the duration of the regeneration process, we adopted a live imaging system based on light-sheet fluorescence microscopy, previously developed in the laboratory. We offer a straightforward quantitative analysis of the temporal and spatial patterns of cell division events showing a statistically significant difference in the frequency of mitotic events and spatial separation of mitotic event clusters between intact and regenerating roots.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Nephrology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing, 100029, China.
The tertiary structure of normal podocytes prevents protein from leaking into the urine. However, observing the complexity of podocytes is challenging because of the scale differences in their three-dimensional structure and the close proximity between neighboring cells in space. In this study, we explored podocyte-secreted angiopoietin-like 4 (ANGPTL4) as a potential morphological marker via super-resolution microscopy (SRM).
View Article and Find Full Text PDFTheranostics
January 2025
Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
Activatable multifunctional nanoparticles present considerable advantages in cancer treatment by integrating both diagnostic and therapeutic functionalities into a single platform. These nanoparticles can be precisely engineered to selectively target cancer cells, thereby reducing the risk of damage to healthy tissues. Once localized at the target site, they can be activated by external stimuli such as light, pH changes, or specific enzymes, enabling precise control over the release of therapeutic agents or the initiation of therapeutic effects.
View Article and Find Full Text PDFTheranostics
January 2025
Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, 02129, MA.
The mannose receptor (CD206, expressed by the gene ) is a surface marker overexpressed by anti-inflammatory and pro-tumoral macrophages. As such, CD206 macrophages play key roles in the immune response to different pathophysiological conditions and represent a promising diagnostic and therapeutic target. However, methods to specifically target these cells remain challenging.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361002, China.
Recent innovations in medical imaging technology have placed molecular imaging techniques at the forefront of diagnostic advancements. The current research trajectory in this field aims to integrate personalized molecular data of patients and diseases with traditional anatomical imaging data, enabling more precise, non-invasive, or minimally invasive diagnostic options for clinical medicine. This article provides an in-depth exploration of the basic principles and system components of optical molecular imaging technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!