AI Article Synopsis

  • PPI (protein-protein interaction) analysis helps scientists understand important processes like how microalgae use carbon and sense nutrients.
  • Signaling networks, including pathways like MAPK/ERK and TOR, show how these tiny plants react to changes in their environment and deal with stress.
  • Recent studies focus on how different microalgae species interact and how different methods can improve our understanding and use of these organisms in various fields.

Article Abstract

PPI analysis deepens our knowledge in critical processes like carbon fixation and nutrient sensing. Moreover, signaling networks, including pathways like MAPK/ERK and TOR, provide valuable information in how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. This review examines recent advancements in the study of biological networks within microalgae, with a focus on the intricate interactions that define these organisms. It emphasizes how network biology, an interdisciplinary field, offers valuable insights into microalgae functions through various methodologies. Crucial approaches, such as protein-protein interaction (PPI) mapping utilizing yeast two-hybrid screening and mass spectrometry, are essential for comprehending cellular processes and optimizing functions, such as photosynthesis and fatty acid biosynthesis. The application of advanced computational methods and information mining has significantly improved PPI analysis, revealing networks involved in critical processes like carbon fixation and nutrient sensing. The review also encompasses transcriptional networks, which play a role in gene regulation and stress responses, as well as metabolic networks represented by genome-scale metabolic models (GEMs), which aid in strain optimization and the prediction of metabolic outcomes. Furthermore, signaling networks, including pathways like MAPK/ERK and TOR, are crucial for understanding how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. The integration of these network biology approaches has deepened our understanding of microalgal interactions, paving the way for more efficient cultivation and new industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-024-04543-7DOI Listing

Publication Analysis

Top Keywords

networks microalgae
12
networks
9
biological networks
8
ppi analysis
8
critical processes
8
processes carbon
8
carbon fixation
8
fixation nutrient
8
nutrient sensing
8
signaling networks
8

Similar Publications

Microphytobenthos spatio-temporal dynamics across an intertidal gradient in a tropical estuary using Sentinel-2 imagery.

Sci Total Environ

January 2025

Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real 11510, Cádiz, Spain; Instituto Universitario de Investigación Marina (INMAR), Campus Universitario de Puerto Real, 11510 Cadiz, Spain.

Intertidal mudflats are among the most productive coastal ecosystems, largely because of the activity of the photosynthetic microbial community on the sediment surface, known as microphytobenthos (MPB). While the dynamics of MPB have been extensively studied in temperate estuaries, there is limited research in tropical estuaries. To address this knowledge gap, we investigated the spatio-temporal dynamics of MPB in the Nicoya Gulf (Costa Rica), one of the world's most productive tropical estuaries, using Sentinel-2 images at 10 m spatial resolution from 2018 to 2022.

View Article and Find Full Text PDF

The connection between gut microbiota and factors like diet is crucial for maintaining intestinal balance, which in turn impacts the host's overall health. microalgae is a sustainable source of bioactive compounds, mainly known for its used in aquaculture and extraction of bioactive lipids, with potential health benefits whose effects on human gut microbiota are still unknown. Therefore, the goal of this work was to assess the impact of on human gut microbiota composition and derived metabolites by combining the INFOGEST protocol and in vitro colonic fermentation process to evaluate potential effects on human gut microbiota conformation through 16S rRNA gene sequencing and its metabolic functionality.

View Article and Find Full Text PDF

Synthesis of Super-High-Viscosity Poly-γ-Glutamic Acid by -Deficient Strain of and Its Application in Microalgae Harvesting.

Microorganisms

November 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China.

Poly-γ-glutamic acid (γ-PGA) is a natural polymer whose molecular weight and viscosity are critical for its application in various fields. However, research on super-high-molecular-weight or -viscosity γ-PGA is limited. In this study, the gene in WX-02 was knocked out using homologous recombination, and the batch fermentation performances of the recombinant strain WX-ΔpgdS were compared to those of WX-02.

View Article and Find Full Text PDF

Unveiling the role of stratified extracellular polymeric substances in membrane-based microalgae harvesting: Thermodynamic and computational insights.

Water Res

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.

Membrane separation technology has emerged as a highly energy-efficient method for microalgae enrichment and harvesting in wastewater treatment. However, membrane fouling caused by algal cells and stratified extracellular polymeric substances (EPS) remains a critical barrier to its industrial-scale application. This study meticulously investigates the micro process of algae-derived pollutants stacking to the membrane surface affected by stratified EPS.

View Article and Find Full Text PDF

Super hydrophilic and super oleophobic carbon nanotube/TiO composite membranes for efficient separation of algal-derived oil/water emulsions.

Colloids Surf B Biointerfaces

April 2025

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!