A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Arylacetamide deacetylase regulates hepatic iron homeostasis to protect against carbon tetrachloride-induced ferroptosis. | LitMetric

Arylacetamide deacetylase regulates hepatic iron homeostasis to protect against carbon tetrachloride-induced ferroptosis.

Arch Toxicol

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.

Published: December 2024

Arylacetamide deacetylase (AADAC) catalyzes the hydrolysis of small molecules containing ester and amide bonds. Recently, it has been reported that AADAC can suppress reactive oxygen species production in cancer cells. This study aimed to elucidate the possibility that AADAC protects against drug-induced liver injury accompanied by oxidative stress and to explore its molecular mechanisms. Intraperitoneal administration of carbon tetrachloride induced significantly more severe liver injury in Aadac knockout (KO) mice (plasma alanine aminotransferase level: 19,381 ± 10,578 U/L) than in wild-type (WT) mice (7219 ± 4729 U/L). More severe liver injury in Aadac KO mice was accompanied by higher hepatic malondialdehyde and antioxidant gene mRNA levels than those in WT mice. The increase in plasma alanine aminotransferase levels in Aadac KO mice was substantially suppressed by pretreatment with the ferroptosis inhibitors deferoxamine or ferrostatin-1, suggesting that Aadac deficiency increases susceptibility to ferroptosis. Immunoprecipitation followed by proteomic analysis revealed that AADAC interacts with ceruloplasmin (CP), which oxidizes ferrous iron to ferric iron. Hepatic CP activity was significantly lower in Aadac KO mice than that in WT mice, resulting in elevated hepatic ferrous iron levels in Aadac KO mice. Overexpression of human AADAC in Huh-7 cells significantly attenuated carbon tetrachloride-induced cytotoxicity by suppressing ferrous iron accumulation, suggesting that AADAC interacts with CP to suppress hepatic ferrous iron accumulation. The hepatoprotective role of Aadac in ferroptosis was also observed in mice with acetaminophen-induced liver injury. This study demonstrates a novel function of AADAC in protecting against ferroptosis induced by hepatotoxicants, carbon tetrachloride and acetaminophen.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-024-03873-5DOI Listing

Publication Analysis

Top Keywords

liver injury
16
aadac mice
16
ferrous iron
16
aadac
14
mice
9
arylacetamide deacetylase
8
carbon tetrachloride-induced
8
severe liver
8
injury aadac
8
plasma alanine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!