Functional connectivity studies to detect neurophysiological correlates of amnestic mild cognitive impairment (aMCI), a prodromal stage of Alzheimer's disease, have generated contradictory results in terms of compensation and deterioration, as most of the studies did not distinguish between the different aMCI subtypes: single-domain aMCI (sd-aMCI) and multiple-domain aMCI (md-aMCI). The present study aimed to characterize the neurophysiological correlates of aMCI subtypes by using resting-state functional magnetic resonance imaging. The study included sd-aMCI (n = 29), md-aMCI (n = 26), and control (n = 30) participants. The data were subjected to independent component analysis (ICA) to explore the default mode network (DMN) and the fronto-parietal control network (FPCN). Additionally, seed-based and moderation analyses were conducted to investigate the connectivity of the medial temporal lobe and functional networks. aMCI subtypes presented differences in functional connectivity relative to the control group: sd-aMCI participants displayed increased FPCN connectivity and reduced connectivity between the posterior parahippocampal gyrus (PHG) and medial structures; md-aMCI participants exhibited lower FPCN connectivity, higher anterior PHG connectivity with frontal structures and lower posterior PHG connectivity with central-parietal and temporo-occipital areas. Additionally, md-aMCI participants showed higher posterior PHG connectivity with structures of the DMN than both control and sd-aMCI participants, potentially indicating more severe cognitive deficits. The results showed gradual and qualitative neurofunctional differences between the aMCI subgroups, suggesting the existence of compensatory (sd-aMCI) and deterioration (md-aMCI) mechanisms in functional networks, mainly originated in the DMN. The findings support consideration of the subgroups as different stages of MCI within the Alzheimer disease continuum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11357-024-01369-9 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFBrain Topogr
January 2025
Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases.
View Article and Find Full Text PDFSci Rep
January 2025
College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The scientific establishment of the Ecological Security Pattern (ESP) is crucial for fostering the synergistic development of ecological and recreational functions, thereby enhancing urban ecological protection, recreational development, and sustainable growth. This study aimed to propose a novel method of constructing ESP considering both ecological and recreational functions, and to reconstruct ESP by weighing the relationship between ecological protection and recreational development. Utilizing Fuzhou City as a case study, a comprehensive application of methodologies including Morphological Spatial Pattern Analysis (MSPA), landscape connectivity analysis, ArcGIS spatial analysis, social network analysis (SNA), and circuit theory is employed to develop both the ESP and the Recreational Spatial Pattern (RSP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!