On the Control of Directionality of Myosin.

J Am Chem Soc

Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States.

Published: October 2024

AI Article Synopsis

  • The study investigates why myosin has a unique directionality and finds that it's controlled by the energy barrier for ADP release during muscle movement.
  • By using various simulation techniques, the researchers confirmed that myosin V and VI exhibit different rates of ADP release, influencing their directional movement.
  • The results establish that the directionality of myosin is primarily affected by the activation barrier, which is critical for understanding muscle function and potential applications in biotechnology.

Article Abstract

The origin of the unique directionality of myosin has been a problem of fundamental and practical importance. This work establishes in a conclusive way that the directionality is controlled by tuning the barrier for the rate-determining step, namely, the ADP release step. This conclusion is based on exploring the molecular origin behind the reverse directionality of myosins V and VI and the determination of the origin of the change in the barriers of the ADP release for the forward and backward motions. Our investigation is performed by combining different simulation methods such as steer molecular dynamics (SMD), umbrella sampling, renormalization method, and automated path searching method. It is found that in the case of myosin V, the ADP release from the postrigor (trailing head) state overcomes a lower barrier than the prepowerstroke (leading head) state, which is also evident from experimental observation. In the case of myosin VI, we noticed a different trend when compared to myosin V. Since the directionality of myosins V and VI follows a reverse trend, we conclude that such differences in the directionality are controlled by the free energy barrier for the ADP release. Overall, the proof that the directionality of myosin is determined by the activation barrier of the rate-determining step in the cycle, rather than by some unspecified dynamical effects, has general importance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c09528DOI Listing

Publication Analysis

Top Keywords

adp release
16
directionality myosin
12
directionality controlled
8
barrier rate-determining
8
rate-determining step
8
directionality myosins
8
case myosin
8
head state
8
myosin
6
directionality
6

Similar Publications

Trends and cost structure of drug-based secondary prevention of ischemic strokes.

Neurol Res Pract

January 2025

Goethe University Frankfurt, University Hospital, Department of Neurology, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.

Background: Advances in secondary stroke prevention, including direct oral anticoagulants (DOACs), dual antiplatelet therapies (DAPT), and cardiovascular risk management, have changed costs over the past decade. This study aimed to evaluate annual treatment costs and trends in drug-based secondary prophylaxis after ischemic strokes.

Methods: Annual treatment costs were evaluated using the net costs per defined daily dosage (DDD) of discharge medications for ischemic stroke patients treated in 2020 at the University Hospital Frankfurt, Germany.

View Article and Find Full Text PDF

Hybrid membrane based biomimetic nanodrug with high-efficient melanoma-homing and NIR-II laser-amplified peroxynitrite boost properties for enhancing antitumor therapy via effective immunoactivation.

Biomaterials

December 2024

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO boost properties was designed for melanoma treatment.

View Article and Find Full Text PDF

PARylation facilitates the DNA damage repair of Phytophthora sojae in response to host ROS stress.

Int J Biol Macromol

December 2024

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China. Electronic address:

Host plants and various fungicides combat plant pathogens by triggering the release of excessive ROS, leading to DNA damage and subsequent cell death. The mechanisms by which the Phytophthora sojae mitigates ROS stress induced by plant immune responses and fungicides are not well understood. This study investigates the role of PsPARP1A-mediated poly (ADP-ribosylation) (PARylation) in ROS-induced DNA damage responses (DDR).

View Article and Find Full Text PDF

Protective effect of Auraptene, a novel acetylcholinesterase inhibitor, on hydrogen peroxide-induced cell toxicity in PC12 cells.

Toxicol Res (Camb)

December 2024

Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Khorasan Razavi, Mashhad, Azadi Square, 9177948954, Iran.

Objective: Alzheimer's disease (ad) is a progressive and degenerative disorder of the central nervous system that is associated with cognitive and memory impairment. The main factors which have been implicated in neurodegeneration of ad are oxidative stress and cholinergic neurons dysfunction. Here, we examined the effects of auraptene, a novel acetylcholinesterase (AChE) inhibitor, on hydrogen peroxide (HO)-induced cell death in PC12 cells.

View Article and Find Full Text PDF

Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2.

Eur J Med Res

December 2024

Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.

Background: The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!