ConspectusFamously found written on the blackboard of physicist Richard Feynman after his death was the phrase, "What I cannot create, I do not understand." From this perspective, recreating the origin of life in the lab is a necessary condition for achieving a deep theoretical understanding of biology. The "metabolism-first" hypothesis is one of the leading frameworks for the origin of life. A complex self-organized reaction network is thought to have been driven into existence as a chemical path of least resistance to release free energy in the environment that could otherwise not be dissipated, rerouting energy from planetary processes to organic chemistry. To increase in complexity, the reaction network, initially under catalysis provided by its geochemical environment, must have produced organic catalysts that pruned the existing flux through the network or expanded it in new directions. This boot-strapping process would gradually lessen the dependence on the initial catalytic environment and allow the reaction network to persist using catalysts of its own making. Eventually, this process leads to the seemingly inseparable interdependence at the heart of biology between catalysts (coenzymes, enzymes, genes) and the metabolic pathways that synthesize them. Experimentally, the primary challenge is to recreate the conditions where such a network emerged. However, the near infinite number of microenvironments and sources of energy available on the early Earth or elsewhere poses an enormous combinatorial challenge. To constrain the search, our lab has been surveying conditions where the reactions making up the core of some of the most ancient chemolithoautotrophic metabolisms, which consist of only a small number of repeating chemical mechanisms, occur nonenzymatically. To give a fresh viewpoint in the first part of this account, we have organized the results of our search (along with important results from other laboratories) by reaction mechanism, rather than by pathway. We expect that identifying a common set of conditions for each type of reaction mechanism will help pinpoint the conditions for the emergence of a self-organized reaction network resembling core metabolism. Many of the reaction mechanisms were found to occur in a wide variety of nonenzymatic conditions. Others, such as carboxylate phosphorylation and C-C bond formation from CO, were found to be the most constraining, and thus help narrow the scope of environments where a reaction network could emerge. In the second part of this account, we highlight examples where small molecules produced by metabolism, known as coenzymes, mediate nonenzymatic chemistry of the type needed for the coenzyme's own synthesis or that turn on new reactivity of interest for expanding a hypothetical protometabolic network. These examples often feature cooperativity between small organic coenzymes and metal ions, recapitulating the transition from inorganic to organic catalysis during the origin of life. Overall, the most interesting conditions are those containing a reducing potential equivalent to H gas (electrochemical or H itself), Fe in both reduced and more oxidized forms (possibly with other metals like Ni) and localized strong electric fields. Environments that satisfy these criteria simultaneously will be of prime interest for reconstructing a metabolic origin of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483746 | PMC |
http://dx.doi.org/10.1021/acs.accounts.4c00423 | DOI Listing |
Evolution
January 2025
Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than previously thought. This raises the possibility that biome transitions could be facilitated by precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap between drought and frost stress responses, but the origin of this overlap, i.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
Langenbecks Arch Surg
January 2025
Stockholm University, Stockholm, Sweden.
Introduction: Imposter syndrome (IS) refers to the psychological experience of imagining that one's achievements do not originate from one's own authentic competence. Surgeons are constantly faced with life-threatening decisions and can easily feel inadequate or insecure despite their years of training and experience. Imposter syndrome can distress surgeons at all career stages and has profound psychological and professional consequences.
View Article and Find Full Text PDFWorld J Surg
January 2025
Precision Medicine Program, Hoag Family Cancer Institute, Newport Beach, California, USA.
Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.
Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.
Cell Biosci
January 2025
Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!