A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Data flow in clinical laboratories: could metadata and peridata bridge the gap to new AI-based applications? | LitMetric

AI Article Synopsis

  • Clinical labs have gotten way better at using tech to manage and share medical data, thanks to advanced systems and software.
  • Although Laboratory Information Systems (LIS) have improved since the 1970s, they still struggle to handle all the extra information produced during testing.
  • The paper suggests splitting this information into two types—metadata (which describes data) and peridata (which helps understand test results)—to make it easier to use and improve healthcare technology.

Article Abstract

In the last decades, clinical laboratories have significantly advanced their technological capabilities, through the use of interconnected systems and advanced software. Laboratory Information Systems (LIS), introduced in the 1970s, have transformed into sophisticated information technology (IT) components that integrate with various digital tools, enhancing data retrieval and exchange. However, the current capabilities of LIS are not sufficient to rapidly save the extensive data, generated during the total testing process (TTP), beyond just test results. This opinion paper discusses qualitative types of TTP data, proposing how to divide laboratory-generated information into two categories, namely metadata and peridata. Being both metadata and peridata information derived from the testing process, it is proposed that the first is useful to describe the characteristics of data, while the second is for interpretation of test results. Together with standardizing preanalytical coding, the subdivision of laboratory-generated information into metadata or peridata might enhance ML studies, also by facilitating the adherence of laboratory-derived data to the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles. Finally, integrating metadata and peridata into LIS can improve data usability, support clinical utility, and advance AI model development in healthcare, emphasizing the need for standardized data management practices.

Download full-text PDF

Source
http://dx.doi.org/10.1515/cclm-2024-0971DOI Listing

Publication Analysis

Top Keywords

metadata peridata
20
data
8
clinical laboratories
8
testing process
8
metadata
5
peridata
5
data flow
4
flow clinical
4
laboratories metadata
4
peridata bridge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!