A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Revealing Local Grain Boundary Chemistry and Correlating it with Local Mass Transport in Mixed-Conducting Perovskite Electrodes. | LitMetric

Grain boundary (GB) mass transport, and chemistry exert a pronounced influence on both the performance and stability of electrodes for solid oxide electrochemical cells. Lanthanum strontium cobalt ferrite (LSCF6428) is applied as a model mixed ionic and electronic conducting (MIEC) perovskite oxide. The cation-vacancy distribution at the GBs is studied at both single and multi-grain scales using high-resolution characterization techniques and computational approaches. The accumulation of oxygen vacancies ( ) in the GB region, rather than necessarily at the GB core, results in an enhancement of the oxygen diffusivity by 3 - 4 orders of magnitude along the GBs (D). At 350 °C, the oxygen tracer diffusion coefficient (D*) is measured as 2.5 × 10 cm s. The D is determined to be 2.8 × 10 cm s assuming a crystallographic GB width (δ) of 1 nm, and 2.5 × 10 cm s using a chemically measured δ of 11.10 nm by atom probe tomography (APT). The origin of the concomitant changes in the cation composition is also investigate. In addition to the host cations, strong Na segregation is detected at all the GBs examined. Despite the low (ppm) level of this impurity, its presence can affect the space charge potential (Φ). This, in turn, will influence the evolution of GB chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636158PMC
http://dx.doi.org/10.1002/smll.202404702DOI Listing

Publication Analysis

Top Keywords

grain boundary
8
mass transport
8
revealing local
4
local grain
4
boundary chemistry
4
chemistry correlating
4
correlating local
4
local mass
4
transport mixed-conducting
4
mixed-conducting perovskite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!