Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During lytic or latent infection of sensory neurons with herpes simplex virus type 1 (HSV-1) there are significant changes in the expression of voltage-gated Na channels, which may disrupt the transmission of pain information. HSV-1 infection can also evoke the secretion of various pro-inflammatory cytokines, including TNF-α and IL-6. In this work, we hypothesized that TNF-α regulates the expression of Na channels during HSV-1 latency establishment in ND7/23 sensory-like neurons. Latency establishment was mimicked by culturing HSV-1 infected ND7/23 cells in the presence of acyclovir (ACV) for 3 days. Changes in the functional expression of voltage-gated Na channels were assessed by whole-cell recordings. Our results demonstrate that infection of ND7/23 cells with the HSV-1 strain McKrae with GFP expression (M-GFP) causes a significant decrease in sodium currents during latency establishment. Exposure of ND7/23 cells to TNF-α during latency establishment reverses the effect of HSV-1, resulting in a significant increase in sodium current density. However, Na currents were not restored by 3 day-treatment with IL-6. There were no changes in the pharmacological and biophysical properties of sodium currents promoted by TNF-α, including sensitivity to tetrodotoxin and the current-voltage relationship. TNF-α stimulation of ND7/23 cells increases p38 signaling. Inhibition of p38 signaling with SB203580 or SB202190 eliminates the stimulatory effect of TNF-α on sodium currents. These results indicate that TNF-α signaling in sensory neurons during latency establishment upregulates the expression of voltage-gated Na channels in order to maintain the transmission of pain information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13365-024-01229-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!