A smart grid (SG) is a cutting-edge electrical grid that utilizes digital communication technology and automation to effectively handle electricity consumption, distribution, and generation. It incorporates energy storage systems, smart meters, and renewable energy sources for bidirectional communication and enhanced energy flow between grid modules. Due to their cyberattack vulnerability, SGs need robust safety measures to protect sensitive data, ensure public safety, and maintain a reliable power supply. Robust safety measures, comprising intrusion detection systems (IDSs), are significant to protect against malicious manipulation, unauthorized access, and data breaches in grid operations, confirming the electricity supply chain's integrity, resilience, and reliability. Deep learning (DL) improves intrusion recognition in SGs by effectually analyzing network data, recognizing complex attack patterns, and adjusting to dynamic threats in real-time, thereby strengthening the reliability and resilience of the grid against cyber-attacks. This study develops a novel Mountain Gazelle Optimization with Deep Ensemble Learning based intrusion detection (MGODEL-ID) technique on SG environment. The MGODEL-ID methodology exploits ensemble learning with metaheuristic approaches to identify intrusions in the SG environment. Primarily, the MGODEL-ID approach utilizes Z-score normalization to convert the input data into a uniform format. Besides, the MGODEL-ID approach employs the MGO model for feature subset selection. Meanwhile, the detection of intrusions is performed by an ensemble of three classifiers such as long short-term memory (LSTM), deep autoencoder (DAE), and extreme learning machine (ELM). Eventually, the dung beetle optimizer (DBO) is utilized to tune the hyperparameter tuning of the classifiers. A widespread simulation outcome is made to demonstrate the improved security outcomes of the MGODEL-ID model. The experimental values implied that the MGODEL-ID model performs better than other models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452646 | PMC |
http://dx.doi.org/10.1038/s41598-024-74733-6 | DOI Listing |
Sci Rep
December 2024
Department of Computer Science and Digital Technologies, University of East London, London, UK.
Nursing activity recognition has immense importance in the development of smart healthcare management and is an extremely challenging area of research in human activity recognition. The main reasons are an extreme class-imbalance problem and intra-class variability depending on both the subject and the recipient. In this paper, we apply a unique two-step feature extraction, coupled with an intermediate feature 'Angle' and a new feature called mean min max sum to render the features robust against intra-class variation.
View Article and Find Full Text PDFSci Rep
December 2024
College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Accurate prediction of runoff is of great significance for rational planning and management of regional water resources. However, runoff presents non-stationary characteristics that make it impossible for a single model to fully capture its intrinsic characteristics. Enhancing its precision poses a significant challenge within the area of water resources management research.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Science, China Pharmaceutical University, Nanjing 211198, China.
The supervision of novel psychoactive substances (NPSs) is a global problem, and the regulation of NPSs was heavily relied on identifying structural matches in established NPSs databases. However, violators could circumvent legal oversight by altering the side chain structure of recognized NPSs and the existing methods cannot overcome the inaccuracy and lag of supervision. In this study, we propose a scaffold and transformer-based NPS generation and Screening (STNGS) framework to systematically identify and evaluate potential NPSs.
View Article and Find Full Text PDFData Brief
December 2024
Department of Computer Science, University of Sheffield, UK.
This paper presents the Cadenza Woodwind Dataset. This publicly available data is synthesised audio for woodwind quartets including renderings of each instrument in isolation. The data was created to be used as training data within Cadenza's second open machine learning challenge (CAD2) for the task on rebalancing classical music ensembles.
View Article and Find Full Text PDFSci Rep
December 2024
Advanced Research Institute for Digital-Twin Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
Traditional hydraulic structures rely on manual visual inspection for apparent integrity, which is not only time-consuming and labour-intensive but also inefficient. The efficacy of deep learning models is frequently constrained by the size of available data, resulting in limited scalability and flexibility. Furthermore, the paucity of data diversity leads to a singular function of the model that cannot provide comprehensive decision support for improving maintenance measures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!