High-turbulence fine particle flotation cell optimization and verification.

Sci Rep

Research Center for Efficient Utilization of Fine Minerals, University of Science and technology Beijing, Beijing, 100083, China.

Published: October 2024

Microfine mineral particles have a small size, light weight, and low inertia, making it difficult for them to deviate from streamlines and collide with bubbles. Conventional flotation operations consume a large amount of reagents and exhibit poor flotation indicators. This study employs computational fluid dynamics (CFD) simulation and hydrodynamic testing to investigate the flow field within a high-turbulence microfine particle flotation machine equipped with a multilayer impeller-stator configuration, and validates the practical application performance of the microfine particle flotation machine through single-batch flotation experiments. Result shows that the impeller region of the traditional mechanical stirring flotation machine has a turbulent energy dissipation rate of 20 m²/s³, whereas that for the microfine particle flotation machine averages over 120 m²/s³. In the flotation verification, the cumulative recovery rate of the fine particle flotation machine is increased by 28% compared with that of the traditional KYF flotation machine. The flotation rate is also 1.3 times that of the KYF, demonstrating stronger selectivity for fine particle concentrates. It has certain guiding significance for the resource utilization of fine particle minerals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452516PMC
http://dx.doi.org/10.1038/s41598-024-73367-yDOI Listing

Publication Analysis

Top Keywords

flotation machine
24
particle flotation
20
fine particle
16
flotation
12
microfine particle
12
particle
7
machine
6
high-turbulence fine
4
flotation cell
4
cell optimization
4

Similar Publications

High-turbulence fine particle flotation cell optimization and verification.

Sci Rep

October 2024

Research Center for Efficient Utilization of Fine Minerals, University of Science and technology Beijing, Beijing, 100083, China.

Microfine mineral particles have a small size, light weight, and low inertia, making it difficult for them to deviate from streamlines and collide with bubbles. Conventional flotation operations consume a large amount of reagents and exhibit poor flotation indicators. This study employs computational fluid dynamics (CFD) simulation and hydrodynamic testing to investigate the flow field within a high-turbulence microfine particle flotation machine equipped with a multilayer impeller-stator configuration, and validates the practical application performance of the microfine particle flotation machine through single-batch flotation experiments.

View Article and Find Full Text PDF

Unveiling the potential of machine learning in cost-effective degradation of pharmaceutically active compounds: A stirred photo-reactor study.

Chemosphere

June 2024

Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia. Electronic address:

In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs): Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties.

View Article and Find Full Text PDF

Ecological niche models (ENMs) serve as valuable tools in assessing the potential species distribution, identifying crucial habitat components for species associations, and facilitating conservation efforts. The current study aimed to investigate the gastrointestinal nematodes (GINs) infection in sheep, predict and analyze their ecological niches and ranges, and identify the key bioclimatic variables influencing their distribution across three distinct climatic regions in Iran. In a cross-sectional study, a total of 2140 fecal samples were collected from semi-arid (n = 800), arid (n = 500), and humid-subtropical (n = 840) climates in East Azerbaijan, Kerman, and Guilan provinces, respectively.

View Article and Find Full Text PDF

Anammox-based granulation cycle for sustainable granular sludge biotechnology from mechanisms to strategies: A critical review.

Water Res

January 2023

Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan. Electronic address:

Anaerobic ammonium oxidation (anammox) granular sludge is a promising biotechnological process for treating low-carbon nitrogenous wastewater, and is featured with low energy consumption and footprint. Previous theoretical and experimental research on anammox granular sludge processes mainly focused on granulation (flocs → granules), but pay little attention to the granulation cycle including granulation and regeneration. This work reviewed the previous studies from the perspective of anammox granules lifecycle and proposed various sustainable formation mechanisms of anammox granules.

View Article and Find Full Text PDF

Current progress on innovative pest detection techniques for stored cereal grains and thereof powders.

Food Chem

December 2022

College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China. Electronic address:

For stored grains and their powders, pest infestation has always been a knotty problem and thus comprises a serious threat to global food security. Obviously, timely, rapid and accurate pest detection methods are of extreme importance to protect grains from pest mouth. In facing the defects of traditional methods, such as visual inspection, grain flotation and pest trap, diverse innovative approaches progressed fast alternatively, either targeting pest itself or diagnosing pest-induced changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!