Microfine mineral particles have a small size, light weight, and low inertia, making it difficult for them to deviate from streamlines and collide with bubbles. Conventional flotation operations consume a large amount of reagents and exhibit poor flotation indicators. This study employs computational fluid dynamics (CFD) simulation and hydrodynamic testing to investigate the flow field within a high-turbulence microfine particle flotation machine equipped with a multilayer impeller-stator configuration, and validates the practical application performance of the microfine particle flotation machine through single-batch flotation experiments. Result shows that the impeller region of the traditional mechanical stirring flotation machine has a turbulent energy dissipation rate of 20 m²/s³, whereas that for the microfine particle flotation machine averages over 120 m²/s³. In the flotation verification, the cumulative recovery rate of the fine particle flotation machine is increased by 28% compared with that of the traditional KYF flotation machine. The flotation rate is also 1.3 times that of the KYF, demonstrating stronger selectivity for fine particle concentrates. It has certain guiding significance for the resource utilization of fine particle minerals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452516 | PMC |
http://dx.doi.org/10.1038/s41598-024-73367-y | DOI Listing |
Sci Rep
October 2024
Research Center for Efficient Utilization of Fine Minerals, University of Science and technology Beijing, Beijing, 100083, China.
Microfine mineral particles have a small size, light weight, and low inertia, making it difficult for them to deviate from streamlines and collide with bubbles. Conventional flotation operations consume a large amount of reagents and exhibit poor flotation indicators. This study employs computational fluid dynamics (CFD) simulation and hydrodynamic testing to investigate the flow field within a high-turbulence microfine particle flotation machine equipped with a multilayer impeller-stator configuration, and validates the practical application performance of the microfine particle flotation machine through single-batch flotation experiments.
View Article and Find Full Text PDFChemosphere
June 2024
Escuela de Ingeniería Química, Universidad Del Valle, Santiago de, Cali, 760026, Valle Del Cauca, Colombia. Electronic address:
In this study, neural networks and support vector regression (SVR) were employed to predict the degradation over three pharmaceutically active compounds (PhACs): Ibuprofen (IBP), diclofenac (DCF), and caffeine (CAF) within a stirred reactor featuring a flotation cell with two non-concentric ultraviolet lamps. A total of 438 datapoints were collected from published works and distributed into 70% training and 30% test datasets while cross-validation was utilized to assess the training reliability. The models incorporated 15 input variables concerning reaction kinetics, molecular properties, hydrodynamic information, presence of radiation, and catalytic properties.
View Article and Find Full Text PDFSci Rep
February 2024
Department of Parasitology, Faculty of Veterinary Medicine, University of Tehran, P.O.Box 14155-6453, Tehran, Iran.
Ecological niche models (ENMs) serve as valuable tools in assessing the potential species distribution, identifying crucial habitat components for species associations, and facilitating conservation efforts. The current study aimed to investigate the gastrointestinal nematodes (GINs) infection in sheep, predict and analyze their ecological niches and ranges, and identify the key bioclimatic variables influencing their distribution across three distinct climatic regions in Iran. In a cross-sectional study, a total of 2140 fecal samples were collected from semi-arid (n = 800), arid (n = 500), and humid-subtropical (n = 840) climates in East Azerbaijan, Kerman, and Guilan provinces, respectively.
View Article and Find Full Text PDFWater Res
January 2023
Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan. Electronic address:
Anaerobic ammonium oxidation (anammox) granular sludge is a promising biotechnological process for treating low-carbon nitrogenous wastewater, and is featured with low energy consumption and footprint. Previous theoretical and experimental research on anammox granular sludge processes mainly focused on granulation (flocs → granules), but pay little attention to the granulation cycle including granulation and regeneration. This work reviewed the previous studies from the perspective of anammox granules lifecycle and proposed various sustainable formation mechanisms of anammox granules.
View Article and Find Full Text PDFFood Chem
December 2022
College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China. Electronic address:
For stored grains and their powders, pest infestation has always been a knotty problem and thus comprises a serious threat to global food security. Obviously, timely, rapid and accurate pest detection methods are of extreme importance to protect grains from pest mouth. In facing the defects of traditional methods, such as visual inspection, grain flotation and pest trap, diverse innovative approaches progressed fast alternatively, either targeting pest itself or diagnosing pest-induced changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!