AI Article Synopsis

  • - Polaritons can confine light at the nanoscale, especially in two-dimensional (2D) materials, making their study essential for advanced applications.
  • - Previous methods focused on optical measurements, but this research introduces a way to electrically detect 2D polaritons using a high-quality 2D-material heterostructure as both a polaritonic platform and a photodetector.
  • - The study highlights the successful electrical detection of mid-infrared polaritonic nanoresonators, which exhibit extreme confinement and high-quality factors, paving the way for new developments in compact sensing and imaging technologies.

Article Abstract

One of the most captivating properties of polaritons is their capacity to confine light at the nanoscale. This confinement is even more extreme in two-dimensional (2D) materials. 2D polaritons have been investigated by optical measurements using an external photodetector. However, their effective spectrally resolved electrical detection via far-field excitation remains unexplored. This hinders their exploitation in crucial applications such as sensing, hyperspectral imaging, and optical spectrometry, banking on their potential for integration with silicon technologies. Herein, we present the electrical spectroscopy of polaritonic nanoresonators based on a high-quality 2D-material heterostructure, which serves at the same time as the photodetector and the polaritonic platform. Subsequently, we electrically detect these mid-infrared resonators by near-field coupling to a graphene pn-junction. The nanoresonators simultaneously exhibit extreme lateral confinement and high-quality factors. This work opens a venue for investigating this tunable and complex hybrid system and its use in compact sensing and imaging platforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452637PMC
http://dx.doi.org/10.1038/s41467-024-52838-wDOI Listing

Publication Analysis

Top Keywords

electrical spectroscopy
8
spectroscopy polaritonic
8
polaritonic nanoresonators
8
nanoresonators captivating
4
captivating properties
4
properties polaritons
4
polaritons capacity
4
capacity confine
4
confine light
4
light nanoscale
4

Similar Publications

Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are highly valued for their chemical stability, tunable size, and biocompatibility. Utilizing green chemistry, a microwave-assisted synthesis method was employed to produce water-soluble GQDs from Mangifera Indica leaf extract. This approach is efficient, cost-effective, and environmentally friendly, offering reduced reaction times, energy consumption, and uniform particle sizes, and has proven advantageous over other methods.

View Article and Find Full Text PDF

We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.

View Article and Find Full Text PDF

Amino acid identification is crucial across various scientific disciplines, including biochemistry, pharmaceutical research, and medical diagnostics. However, traditional methods such as mass spectrometry require extensive sample preparation and are time-consuming, complex and costly. Therefore, this study presents a pioneering Machine Learning (ML) approach for automatic amino acid identification by utilizing the unique absorption profiles from an Elliptical Dichroism (ED) spectrometer.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!