Understanding how cells communicated before the evolution of nervous systems in early metazoans is key to unraveling the origins of multicellular life. We focused on Trichoplax adhaerens, one of the earliest multicellular animals, to explore this question. Through screening a small compound library targeting G protein-coupled receptors (GPCRs), we found that Trichoplax exhibits distinctive rotational movements when exposed to epinephrine. Further studies suggested that, akin to those in humans, this basal organism also utilizes adrenergic signals to regulate its negative taxis behavior, with the downstream signaling pathway being more straightforward and efficient. Mechanistically, the binding of ligands activates downstream calcium signaling, subsequently modulating ciliary redox signals. This process ultimately regulates the beating direction of cilia, governing the coordinated movement of the organism. Our findings not only highlight the enduring presence of adrenergic signaling in stress responses during evolution but also underscore the importance of early metazoan expansion of GPCR families. This amplification empowers us with the ability to sense external cues and modulate cellular communication effectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452686 | PMC |
http://dx.doi.org/10.1038/s41467-024-52941-y | DOI Listing |
Ann Biomed Eng
January 2025
Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.
View Article and Find Full Text PDFProtoplasma
January 2025
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India, 721302.
Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan.
Spatial transcriptomics is an essential application for investigating cellular structures and interactions and requires multimodal information to precisely study spatial domains. Here, we propose STAIG, a deep-learning model that integrates gene expression, spatial coordinates, and histological images using graph-contrastive learning coupled with high-performance feature extraction. STAIG can integrate tissue slices without prealignment and remove batch effects.
View Article and Find Full Text PDFCell Death Discov
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
Methyltransferase-like 1 (METTL1)-mediated m7G modification is a common occurrence in various RNA species, including mRNAs, tRNAs, rRNAs, and miRNAs. Recent evidence suggests that this modification is linked to the development of several cancers, making it a promising target for cancer therapy. However, the specific role of m7G modification in cutaneous squamous cell carcinoma (cSCC) is not well understood.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Institute of Neurological Sciences, Prince of Wales Hospital and the University of New South Wales, Randwick, Sydney, New South Wales, Australia
Acute cerebellar ataxia is a clinical syndrome that involves loss of balance and coordination, typically within less than 72 hours. It usually presents in children and rarely affect adults. A woman in her early 20s presented with acute onset dizziness, vertigo, truncal ataxia and dysarthria 2 weeks following an acute viral illness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!