Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Harvested longan fruit is prone to pericarp browning, which restricts preservation quality and shortens fruit shelf life. The antioxidant system can defend against oxidative stress-mediated quality deterioration such as fruit browning. This study aimed to evaluate the effect of tert-butylhydroquinone (TBHQ) on anti-browning ability of longan fruit in association with redox metabolism. The results indicated that the application of 0.02% TBHQ significantly suppressed the progression of pericarp browning. In comparison with control, TBHQ treatment decreased the contents of hydrogen peroxide (HO), superoxide radical (O ⋅), and malondialdehyde, and retained high levels of ascorbic acid (AsA), glutathione (GSH), total phenolics as well as 1,1-diphenyl-2-picrylhydrazyl scavenging rate. Enhanced enzymatic activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase, and dehydroascorbate reductase (DHAR), but decreased activities of polyphenol oxidase and peroxidase were also observed in TBHQ-treated fruit. Gene expression analysis indicated that redox metabolism-related genes, including DlSOD, DlCAT, DlGR, and DlAPX, were upregulated after TBHQ treatment. Correlation analysis suggested that antioxidants, including AsA, GSH, CAT, APX, SOD, and DHAR, were negatively correlated to reactive oxygen species production and percarp browning. These results suggest that TBHQ is effective in alleviating pericarp browning by increasing antioxidant capacity of longan fruit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.17389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!