Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Four polysaccharides, named FSIP, FSIP-I, FSIP-II and FSIP-III, were isolated from Flos Sophorae Immaturus. Structure characterization revealed that FSIP-I and FSIP-II were types of AG-II-like polysaccharides while FSIP-III featured a RG-II-like structure with high content of GalpA. In vitro experiments showed that FSIPs upregulated HK and PK activities in glycolysis while downregulated G-6-Pase activities in gluconeogenesis. This increased glucose utilization while decreased the glucose synthesis in IR-HepG2 cells, potentially reducing elevated blood sugar levels induced by excess insulin. In terms of antioxidant system, FSIPs decreased the levels of ROS and MDA, and increased the activities of SOD and CAT, enhancing antioxidant capacity to counteract damage caused by insulin resistance in IR-HepG2 cells. To further explore the mechanism, related genes expressions were analyzed. The results found that FSIPs ameliorated insulin resistance via regulating AMPK and IRS-1/PI3K/AKT signal pathways. In the case of AMPK, glucose can be channeled into oxidative (catabolic) pathway, whereas, in the case of IRS-1/PI3K/AKT, glucose can be stored as glycogen (anabolic). This co-modulation could ameliorate insulin resistance by upregulating the glycolysis and repressing the gluconeogenesis in catabolism, and upregulating the glycogen synthesis in anabolism. Additionally, FSIP-III exhibited better anti-insulin resistance activity, attributed to its high content of GalpA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!