Intrinsically disordered proteins (IDPs) lack stable tertiary structures under physiological conditions, yet play key roles in biological processes and associated with human complex diseases. Their conformational characteristics and high content of charged residues make the use of polarizable force fields an advantageous for simulating IDPs. The Drude2019IDP polarizable force field, previously introduced, has demonstrated comprehensive enhancements and improvements in dipeptides, short peptides, and IDPs, achieving a balanced sampling between IDPs and structured proteins. However, the performance in simulating 5 dipeptides was found to be underestimate. Therefore, we individually performed reweighting and grid-based energy correction map (CMAP) optimization for these 5 dipeptides, resulting in the enhanced Drude2019IDPC force field. The performance of Drude2019IDPC was evaluated with 5 dipeptides, 5 disordered short peptides, and a representative IDP. The results demonstrated a marked improvement comparing with original Drude2019IDP. To further substantiate the capabilities of Drude2019IDPC, MD simulation and Markov state model (MSM) were applied to wild type and mutant for insulin, to elucidate the difference of conformational characteristics and transition path. The findings reveal that mutation can maintain the monomorphic characteristics, providing insights for engineered insulin development. These results indicate that Drude2019IDPC could be used to reveal the structure-function relationship for other proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136256 | DOI Listing |
J Comput Chem
January 2025
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy.
We present a polarizable embedding quantum mechanics/molecular mechanics (QM/MM) framework for ground- and excited-state Complete Active Space Self-Consistent Field (CASSCF) calculations on molecules within complex environments, such as biological systems. These environments are modeled using the AMOEBA polarizable force field. This approach is implemented by integrating the OpenMMPol library with the CFour quantum chemistry software suite.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2024
Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France.
Electronic polarization and dispersion are decisive actors in determining interaction energies between molecules. These interactions have a particularly profound effect on excitation energies of molecules in complex environments, especially when the excitation involves a significant degree of charge reorganization. The direct reaction field (DRF) approach, which has seen a recent revival of interest, provides a powerful framework for describing these interactions in quantum mechanics/molecular mechanics (QM/MM) models of systems, where a small subsystem of interest is described using quantum chemical methods and the remainder is treated with a simple MM force field.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
"Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
Optical filters are essential components for a variety of applicative fields, such as communications, chemical analysis and optical signal processing. This article describes the preparation and characterization of a new optical filter made of polyvinyl alcohol and incremental amounts of crystal violet. By using distinct solvents (HO, dimethyl sulfoxide (DMSO) and HO) to obtain the dyed polymer films, new insights were gained into the pathway that underlies the possibility of tailoring the material's optical performance.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, USA.
Molecular dynamics simulations are crucial for understanding the structural and dynamical behavior of biomolecular systems, including the impact of their environment. However, there is a gap between the time scale of these simulations and that of real-world experiments. To address this problem, various enhanced simulation methods have been developed.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Space Vehicles Directorate, US Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, United States of America.
The subject of our present investigation is the collective electronic properties of various types of pseudospin-1 Dirac-cone materials with a flat band and finite bandgaps in their low-energy spectra. Specifically, we have calculated the dynamical polarization, plasmon dispersions, as well as their decay rates due to Landau damping and presented the closed-form analytical expressions for the wave function overlaps for both the gapped dice lattice and the Lieb lattice. The gapped dice lattice is a special case of the more general-T3model such that its band structure is symmetric and the flat band remains dispersionless.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!