AI Article Synopsis

  • Monoterpene indole alkaloids (MIAs) from the kratom plant, like mitragynine and speciogynine, show potential for treating pain and addiction, with a complex historical use in Southeast Asia as pain relief and a stimulant.* -
  • The researchers successfully engineered yeast (Saccharomyces cerevisiae) to produce these MIAs by reconstructing a synthetic pathway that converts a precursor compound, achieving a yield of around 290 μg/L.* -
  • The study also opens up avenues for optimizing production further and creating new derivatives of mitragynine with potential uses in drug development, establishing a platform for biomanufacturing these compounds.*

Article Abstract

Monoterpene indole alkaloids (MIAs) from Mitragyna speciosa ("kratom"), such as mitragynine and speciogynine, are promising novel scaffolds for opioid receptor ligands for treatment of pain, addiction, and depression. While kratom leaves have been used for centuries in South-East Asia as stimulant and pain management substance, the biosynthetic pathway of these psychoactives have only recently been partially elucidated. Here, we demonstrate the de novo production of mitragynine and speciogynine in Saccharomyces cerevisiae through the reconstruction of a five-step synthetic pathway from common MIA precursor strictosidine comprising fungal tryptamine 4-monooxygenase to bypass an unknown kratom hydroxylase. Upon optimizing cultivation conditions, a titer of ∼290 μg/L kratom MIAs from glucose was achieved. Untargeted metabolomics analysis of lead production strains led to the identification of numerous shunt products derived from the activity of strictosidine synthase (STR) and dihydrocorynantheine synthase (DCS), highlighting them as candidates for enzyme engineering to further improve kratom MIAs production in yeast. Finally, by feeding fluorinated tryptamine and expressing a human tailoring enzyme, we further demonstrate production of fluorinated and hydroxylated mitragynine derivatives with potential applications in drug discovery campaigns. Altogether, this study introduces a yeast cell factory platform for the biomanufacturing of complex natural and new-to-nature kratom MIAs derivatives with therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2024.09.011DOI Listing

Publication Analysis

Top Keywords

kratom mias
12
novo production
8
monoterpene indole
8
indole alkaloids
8
mitragynine speciogynine
8
kratom
6
production
5
metabolic engineering
4
engineering yeast
4
yeast novo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!