Hypothesis: Passive low ice-adhesion surfaces are frequently composed of soft materials; however, soft materials potentially present durability issues, which could be overcome by fabricating composite surfaces with patterned rigid and soft areas. Here we propose the innovative concept of discontinuity-enhanced icephobic surfaces, where the stress concentration at the edge between rigid and soft areas, i.e. where discontinuities in elasticity are located, facilitates ice detachment.
Experiments: Composite model surfaces were fabricated with controlled rigid-soft ratios and discontinuity line lengths. The ice adhesion values were measured while recording the ice/substrate interface, to unravel the underpinning ice detachment mechanism. The experiments were complemented by numerical simulations that provided a better understanding of the ice detachment mechanism.
Findings: It was found that when a surface contains rigid and soft areas, stress is concentrated at the edge between soft and hard areas, i.e. at the discontinuity line, rather than all over the soft or rigid areas. An unexpected non-unidirectional crack propagation was observed for the first time and elucidated. When rigid and deformable materials are present, the crack occurs on the discontinuity line and propagates first on rigid and then on soft areas. Moreover, it was demonstrated that an increase in discontinuities promotes crack initiation and leads to a reduction of ice adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.09.205 | DOI Listing |
Soft Matter
January 2025
College of Chemistry, Sichuan University, Chengdu 610064, China.
Biomolecules usually adopt ubiquitous circular structures which are important for their functionality. Based on three-dimensional Langevin dynamics simulations, we investigate the conformational change of a polymer confined in a spherical cavity. Both passive and active polymers with either homogeneous or heterogeneous stiffness are analyzed in a comparative manner.
View Article and Find Full Text PDFChem Asian J
January 2025
Kyoto University, Institute for Integrated Cell-Material Sciences, Yoshida, Sakyo-ku, 606-8501, Kyoto, JAPAN.
The architectural characteristics of metal-organic frameworks (MOFs) can be examined through their net topology, which consists of nodes and linkers. A node's connectivity and site symmetry are likely the key elements influencing the net topology of MOFs. Metal-organic polyhedra (MOPs) function effectively as nodes when used as supermolecular building blocks (SBBs).
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Otorhinolaryngology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
Purpose: The aim of this study is to obtain the anatomical limits of the parapharyngeal space by transoral surgical approach, in order to objectively determine the types of lesions according to location, where this type of approach is more indicated.
Methods: A prospective, experimental, radio-anatomical study was performed on 10 cryopreserved human heads(20 sides). A transoral approach of the parapharyngeal space was performed determining its anatomical limits by CT navigation.
BMC Pulm Med
January 2025
Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
Background: Glomus tumors (GTs) are rare, comprising only 2% of all soft tissue tumors. Pulmonary GTs are exceptionally rare, with fewer than 80 cases reported to date. Little is known about the therapeutic outcomes of rigid bronchoscopy for endobronchial GT.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Soybean protein isolate (SPI) and acidic tremella fuciformis fruiting body polysaccharide (AP) were used to prepare phased products "sterilized soft gel (SPI-AP)" and "fermented strong gel (FSPI-AP)" to study the structural network, interaction and gel characteristics. The contents of α-helix (20.43 % to 25.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!