Buffer-free high pH mobile phase LC-MS/MS for determination of the alcohol biomarker phosphatidylethanol 16:0/18:1 and 20 drugs and metabolites in whole blood.

Talanta

Section of Forensic Research, Department of Forensic Sciences, Division of Laboratory Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424, Oslo, Norway. Electronic address:

Published: January 2025

Background: Acidic mobile phases are commonly used in reversed phase liquid chromatography tandem mass spectrometry (LC-MS/MS) bioanalysis. However, increased sensitivity, improved peak symmetry, and increased retention, especially for basic hydrophilic drugs have been observed using basic mobile phases. In our previous acidic mobile phase LC-MS/MS method we needed two injections (0.4 and 2.0 μL) of each sample for this task, which is inefficient. The aim of this study was to investigate if basic mobile phase LC-MS/MS could be used to determine phosphatidylethanol 16:0/18:1 and 20 other drugs and metabolites with satisfactory sensitivity in one single run.

Methods: Whole blood was prepared by 96-well supported-liquid extraction using heptane/ethyl acetate/2-propanol (16:64:20, v:v:v). Chromatographic separation was achieved on an Acquity BEH C column (50 × 2.1 mm I.D.), using a mobile phase with 0.025 % ammonia, pH 10.7 (Solvent A) and methanol (Solvent B). All compounds had isotope-labelled internal standards.

Results: The method was fully validated. Recovery was between 63 and 91 % for 20 compounds and 10 % for benzoylecgonine. Matrix effects were low, except for ion enhancement of buprenorphine and ion suppression for THC. However, internal standards compensated for these effects. Inter-assay precision and accuracy were < ± 20 % for all compounds at five tested concentrations, except for methamphetamine at the highest concentration.

Conclusion: An LC-MS/MS method for simultaneous determination of PEth 16:0/18:1 and 20 drugs and metabolites in whole blood were for the first time developed and validated. Retention of PEth 16:0/18:1 was, in contrast to the other 20 compounds, largely affected by mobile phase buffer concentration. The buffer free basic mobile phase ensured that phosphatidylethanol 16:0/18:1 eluted before most of the unwanted phospholipids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126964DOI Listing

Publication Analysis

Top Keywords

mobile phase
24
phase lc-ms/ms
12
phosphatidylethanol 160/181
12
160/181 drugs
12
drugs metabolites
12
basic mobile
12
mobile
8
metabolites blood
8
acidic mobile
8
mobile phases
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!