Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work introduces an extremely easy method for preparing luminescent carbon dots (CDs) at ambient temperature using 1,2-naphthoquinone sulphonate and ethylenediamine as precursors via self-exothermic reaction without energy input. The as-obtained CDs have a high quantum yield (34.1 %), a production yield of 21.2 %, and a small size diameter (3.44 nm). Various techniques (NMR, TEM, EDX-mapping, XPS, XRD, FT-IR, fluorescence, and UV-visible spectroscopy) were used to characterize the prepared CDs. The CDs exhibited an excitation-independent emission with λ of 275 nm, demonstrating their homogeneity and high purity. The anticancer drug vincristine (VCR) quantitively quenched the fluorescent signal of the synthesized CDs, allowing their application as the first fluorescent nano-sensor to determine VCR. The quenching effect was linear within the range of 0.2-5.0 μg mL, enabling the determination of VCR in vials, plasma, and for content uniformity testing with a detection limit of 0.06 μg mL. Moreover, the synthesized CDs were employed as a bio-sensing platform to detect VCR in cancer cells owing to their good selectivity, excellent biocompatibility, minimal cytotoxicity, and high stability. The fabrication of CDs with excellent properties at room temperature under mild conditions paves the way for new advancements in the room temperature synthesis of CDs and offers a highly efficient alternative to traditional synthesis approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126971 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!