A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a novel Japanese eel myoblast cell line for application in cultured meat production. | LitMetric

Development of a novel Japanese eel myoblast cell line for application in cultured meat production.

Biochem Biophys Res Commun

School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan.

Published: November 2024

The present study investigates the isolation, analysis, and characterization of primary cultured cells derived from the muscle tissue of Japanese eel (Anguilla japonica), culminating in establishing a spontaneously immortalized myoblast cell line, JEM1129. We isolated satellite cells from eel muscle tissue to establish a foundation for cultured eel meat production. While initial cell cultures contained myoblasts, continued passaging led to a decline in myoblast characteristics and an increase in fibroblast-like cells. RNA-Seq and RT-qPCR analyses showed significant downregulation of well-established markers for satellite cells and myoblasts, such as pax7a and myoD, over successive passages, highlighting a loss of myoblastic traits. Single-cell cloning was employed to overcome this challenge and maintain myoblast purity, leading to the successful creation of the JEM1129 cell line. These JEM1129 cells demonstrated enhanced expression of myoblast marker genes, exceeding the initial primary culture cell population. The cells showed strong myotube formation, particularly when cultured in a differentiation medium, indicating their robust potential for muscle development. The JEM1129 cell line represents a significant advancement in the cultivation of eel muscle cells, offering a promising avenue for cultured meat production. The findings contribute to a deeper understanding of muscle cell biology and provide valuable insights into using fish-derived myoblasts for cultured meat production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150784DOI Listing

Publication Analysis

Top Keywords

meat production
16
cultured meat
12
japanese eel
8
myoblast cell
8
muscle tissue
8
satellite cells
8
eel muscle
8
cultured
6
cells
6
eel
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!