AI Article Synopsis

  • - This study examined how effectively Salvinia biloba can remove Ciprofloxacin (CIP) from water, finding a 98% removal rate at a concentration of 4 mg/L.
  • - Results indicated that low CIP concentrations boosted the growth of S. biloba, while high concentrations led to growth inhibition and oxidative stress.
  • - The research highlighted the impact of CIP on root microbial communities and proposed five degradation pathways for CIP, emphasizing that biodegradation was the key method for removal and suggesting S. biloba's potential in treating antibiotic-contaminated water.

Article Abstract

This paper investigated the removal amount of Ciprofloxacin (CIP) by Salvinia biloba Raddi (S. biloba) under various conditions, the physiological response under different CIP concentrations, the influence of CIP on the root microbial community structure of S. biloba, the possible metabolic pathways and removal mechanism. The results showed that under 4 mg/L CIP, the removal rate of CIP was 98 %. Under different CIP concentration conditions, low CIP concentration promoted the growth of S. biloba, while high CIP inhibited the growth of S. biloba and S. biloba was exposed to different degrees of oxidative stress. CIP affected root microbial community diversity and changed microbial community structure. Five possible degradation pathways were proposed through the determination of intermediate metabolites. According to mass balance calculations, biodegradation was the most critical degradation pathway. This study demonstrated the potential use of S. biloba for treating CIP-contaminated water and provided insights into the mechanisms of plant-based antibiotic degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136038DOI Listing

Publication Analysis

Top Keywords

microbial community
16
root microbial
12
cip
9
biloba
8
salvinia biloba
8
biloba raddi
8
physiological response
8
cip root
8
community structure
8
cip concentration
8

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric condition among children and adolescents, often associated with a high risk of psychiatric comorbidities. Currently, ADHD diagnosis relies exclusively on clinical presentation and patient history, underscoring the need for clinically relevant, reliable, and objective biomarkers. Such biomarkers may enable earlier diagnosis and lead to improved treatment outcomes.

View Article and Find Full Text PDF

Severe acute pancreatitis (SAP) is one of the leading causes of hospital admissions for gastrointestinal diseases, with a rising incidence worldwide. Intestinal microbiota dysbiosis caused by SAP exacerbates systemic inflammatory response syndrome and organ dysfunction. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic option for gastrointestinal diseases.

View Article and Find Full Text PDF

There is a complex interplay between the gut microbes, liver, and central nervous system, a gut-liver-brain axis, where the brain impacts intestinal and hepatic function while the gut and liver can impact cognition and mental status. Dysregulation of this axis can be seen in numerous diseases. Hepatic encephalopathy, a consequence of cirrhosis, is perhaps the best studied perturbation of this system.

View Article and Find Full Text PDF

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!