A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioaccumulation and toxicological effects of dietborne arsenic exposure on the apple snail (Pomacea canaliculata). | LitMetric

Bioaccumulation and toxicological effects of dietborne arsenic exposure on the apple snail (Pomacea canaliculata).

J Hazard Mater

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: December 2024

An eight-compartment physiologically based pharmacokinetic (PBPK) model was used to simulate the bioaccumulation and distribution of arsenic (As) within the apple snail (Pomacea canaliculata) following the ingestion of As-contaminated lettuce. The bioaccumulation results revealed that the shell contained the majority (67.21 %) of the total As content, with the liver and the head-foot containing approximately 11.14 % and 10.45 % of the total As content in the snail, respectively. Modeling quantified the process of intestine-stomach absorption of dietborne As and revealed its crucial role in the subsequent distribution of As within the body. The liver is the primary metabolic site, whereas the shell is the primary storage site. Exposure to dietborne As leads to pronounced physiological and biochemical alterations in apple snails. Total protein levels decreased by 24.06 %, superoxide dismutase (SOD) activity decreased by 24.43 %, malondialdehyde (MDA) content increased by 47.51 %, glutathione (GSH) content decreased by 46.99 %, and glutathione S-transferase (GST) activity decreased by 42.22 %. Furthermore, the subcellular-level results indicated that dietborne As exposure altered subcellular distribution in the liver. Additionally, dietborne As exposure significantly reduced the abundance of gut microbiota in apple snails.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.136034DOI Listing

Publication Analysis

Top Keywords

apple snail
8
snail pomacea
8
pomacea canaliculata
8
total content
8
apple snails
8
activity decreased
8
dietborne exposure
8
dietborne
5
bioaccumulation toxicological
4
toxicological effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!