Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article studies the secure consensus control problem of multiagent systems (MASs) with a nonzero input leader subject to denial-of-service (DoS) attacks. The introduction of backup topologies makes it possible for MASs to actively defend against DoS attacks. Subsequently, a novel active defense method consisting of two types of state observers, an adaptive topology switching mechanism, and switching controllers is proposed, which can ensure the leader-follower bound consensus even if DoS attacks hinder the interaction between agents. Within such a defense framework, the switching mechanism, driven by the predefined performance index and designed monitoring function, can automatically search for a healthy communication graph among backup topologies. Concurrently, the observer-based switching control strategy will be modified to match the corresponding topology, in which the universal observer and controller parameters in different topologies are obtained by solving linear matrix inequalities. It should be highlighted that the developed defense scheme not only removes the limitations of existing results on the duration and frequency of DoS attacks but also ensures the same upper bound of consensus error before and after DoS attacks. Finally, several simulation examples for different systems illustrate the efficiency and superiority of the theoretical results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2024.3467272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!